Skip to main content

Myocardial metabolic imaging with iodine-123 fatty acids

  • Chapter
What’s New in Cardiac Imaging?

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 133))

  • 80 Accesses

Abstract

The maintainance of a normal metabolism is most important for the heart because it forms the basis for contractile function. Although the clinician is accustomed to evaluating symptoms and derangement of pump function during manifestations of disease, often an appreciation is lacking that abnormalities in metabolism precede functional derangements. For example, one of the first problems in ischemia is the rapid depletion of high-energy phosphates, which are necessary to maintain contraction. On the other hand, chronic increased demand, which occurs with hypertrophy, may lead to metabolic changes. These considerations indicate that it is important to study myocardial metabolism in patients with cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Visser FC, Van Eenige MJ, Duwel CM, Van Lingen A, Roos JP. Radioiodinated fatty acid scintigraphy of the normal human myocardium during exercise testing: a new interpretation. Nuc Compact 1990; 21: 236–40.

    Google Scholar 

  2. Kuikka JT, Mustonen JN, Uusitupa MI et al. Demonstration of disturbed free fatty acid metabolism of myocardium in patients with non-insulin-dependent diabetes mellitus as measured with iodine-123-heptadecanoic acid. Eur J Nucl Med 1991; 18: 475–81.

    PubMed  CAS  Google Scholar 

  3. Duwel CM, Visser FC, Van Eenige MJ, Den Hollander W, Roos JP. The fate of 1311-17-iodoheptadecanoid acid during lactate loading: its oxidation is strongly inhibited in favor to its esterification. A radiochemical study in the canine heart. Nuklearmedizin 1990; 29: 24–7.

    CAS  Google Scholar 

  4. Machulla HJ, Marsmann M, Dutchka K. Biochemical concept and synthesis of a radioiodinated phenylfatty acid for in vivo metabolic studies of the myocardium. Eur J Nucl Med 1980: 5: 171–3.

    Article  PubMed  CAS  Google Scholar 

  5. Dudczak R, Schmolinger R, Kletter K, Frischauf H, Angelberger P. Clinical evaluation of 123I-labeled-p-phenylpentadecanoic acid (p-IPPA) for myocardial scintigraphy. J Nucl Med Allied Sci 1983; 27: 267–79.

    PubMed  CAS  Google Scholar 

  6. Vyska K, Machulla HJ, Stremmel W et al. Regional myocardial free fatty acid extraction in normal and ischemic myocardium. Circulation 1988; 78: 1218–33.

    CAS  Google Scholar 

  7. Beckurts TE, Shreeve WW, Schieren R, Feinendegen LE. Kinetics of different 1231-and 14C-labelled fatty acids in normal and diabetic rat myocardium in vivo. Nucl Med Commun 1985; 6: 415–24.

    Article  PubMed  CAS  Google Scholar 

  8. Antar MA, Spohr G, Herzog HH et al. 15-(ortho-123I-phenyl)-pentadecanoic acid, a new myocardial imaging agent for clinical use. Nucl Med Commun 1986; 7: 683–96.

    PubMed  CAS  Google Scholar 

  9. Westera G, Visser FC. Myocardial uptake of radioactively labelled free fatty acids. Eur Heart J 1985; 6 Suppl B:3–12.

    Article  PubMed  CAS  Google Scholar 

  10. Fischman AJ, Saito T, Dilsizian V et al. Myocardial fatty acid imaging: rationale, comparison of (ll)C-and (123)I-labeled fatty acids, and potential clinical utility. Am J Card Imaging 1989; 3: 288–96.

    Google Scholar 

  11. Ambrose KR, Owen BA, Callahan AP, Goodman MM, Knapp FF Jr. Effects of fasting on the myocardial subcellular distribution and lipid distribution of terminal p-iodophenyl-substituted fatty acids in rats. Int J Rat Appl Instrum [B] 1988; 15: 695–700.

    Article  CAS  Google Scholar 

  12. Ambrose KR, Rice DE, Goodman MM, Knapp FF. Effect of 3-methyl-branching on the metabolism in rat hearts of radioiodinated iodovinyl long chain fatty acids. Eur J Nucl Med 1987; 13: 374–9.

    Article  PubMed  CAS  Google Scholar 

  13. Ambrose KR, Owen BA, Goodman MM, Knapp FF Jr. Evaluation of the metabolism in rat hearts of two new radioiodinated 3-methyl-branched fatty acid myocardial imaging agents. Eur J Nucl Med 1987; 12: 486–91.

    Article  PubMed  CAS  Google Scholar 

  14. Knapp FF Jr, Goodman MM, Ambrose KR et al. The development of radioiodinated 3-methylbranched fatty acids for evaluation of myocardial disease by single photon techniques.In: van der Wall EE, editor. Noninvasive imaging of cardiac metabolism: single photon scintigraphy, positron emission tomography and nuclear magnetic resonance. Dordrecht: Martinus Nijhoff, 1987: 159–261.

    Google Scholar 

  15. Hudon MP, Lyster DM, Jamieson WR, Qayumi AK, Sartori C, Dougan H. The metabolism of 15-p-[123I]-iodophenylpentadecanoic acid in a surgically induces canine model of regional ischemia. Eur J Nucl Med 1990; 16: 199–204.

    Article  PubMed  CAS  Google Scholar 

  16. Visser FC, Westera G.Radioiodinated free fatty acids: a clue to myocardial metabolism? In: van der Wall EE, editor. Noninvasive imaging of cardiac metabolism: single photon scintigraphy, positron emission tomography and nuclear magnetic resonance. Dordrecht: Martinus Nijhoff, 1987: 127–38.

    Google Scholar 

  17. Visser FC, Sloof GW, Comans E, van Eenige MJ, Knapp FF. Metabolism of radioiodinated 17-iodo heptadecanoic acid in the normal and ischemic dog heart. Eur Heart J 1990; 11 Suppl: 137.

    Google Scholar 

  18. Relias JR, Corbett JR, Kulkarni PV et al. Iodine-123 phenylpentadecanoic acid: detection of acute myocardial infarction and injury in dogs using an iodinated fatty acid and single-photon emission tomography. Am J Cardiol 1983; 52: 1326–32.

    Article  Google Scholar 

  19. Reske SN. 1231-phenylpentadecanoic acid as a tracer of cardiac free fatty acid metabolism. Experimental and clinical results. Eur Heart J 1985; 6 Suppl B: 39–47.

    Article  PubMed  CAS  Google Scholar 

  20. Reske SN, Koischwitz D, Reichmann K et al. Cardiac metabolism of 15 (p-I-123 phenyl-) pentadecanoic acid after intracoronary tracer application. Eur J Radiol 1984; 4: 144–9.

    PubMed  CAS  Google Scholar 

  21. Railton R, Rodger JC, Small DR, Harrower AD. Myocardial scintigraphy with I-123 heptadecanoic acid as a test for coronary heart disease. Eur J Nucl Med 1987; 13: 63–6.

    Article  PubMed  CAS  Google Scholar 

  22. Dudczak R, Kletter K, Frischauf H, Losert U, Angelberger P, Schmoliner R. The use of 123I-labeled heptadecanoic acid (HDA) as metabolic tracer: preliminary report. Eur J Nucl Med 1984; 9: 81–5.

    Article  PubMed  CAS  Google Scholar 

  23. Dudczak R, Schmoliner R, Angelberger P, Kletter K, Losert U, Frischauf H. Myocardial perfusion and metabolism as assessed by Tl-201 and I-123 heptadecanoic acid scintigraphy. Nuklearmedizin 1982; 21 Suppl 19: 540–4.

    Google Scholar 

  24. Van Eenige MJ, Visser FC, Duwel CM, Roos JP. Clinical value of studies with radioiodinated heptadecanoic acid in patients with coronary artery disease. Eur Heart J 1990; 11: 258–68.

    PubMed  Google Scholar 

  25. Freundlieb C, Hock A, Vyska K, Feinendegen LE, Machulla HJ, Stoklin G. Myocardial imaging and metabolic studies with [17-123I]iodoheptadecanoic acid. J Nucl Med 1980; 21: 1043–50.

    PubMed  CAS  Google Scholar 

  26. Visser FC, Van Eenige MJ, Van der Wall EE et al. The elimination rate of 123I-heptadecanoic acid after intracoronary and intravenous administration. Eur J Nucl Med 1985; 11:114–9.

    Article  PubMed  CAS  Google Scholar 

  27. Fridrich L, Pichler M, Gassner A, Vagner M, Mostbeck G, Eghbalian F. Tracer elimination in I-123-heptadecanoic acid: half-life, component ratio and circumferential profiles in patients with cardiac disease. Eur Heart J 1985; 6 Suppl B: 61–70.

    Article  PubMed  Google Scholar 

  28. Dudczak R, Schmoliner R, Angelberger P, Knapp FF, Goodman MM. Structurally modified fatty acids: clinical potential as tracers of metabolism. Eur J Nucl Med 1986; 12 Suppl: 545–8.

    Article  Google Scholar 

  29. Kaiser KP, Vester E, Grossmann K, Geuting B, Loesse B, Feinendegen LE. 15-(ortho-I-123-phenyl)pentadecanoic acid (OPPA) in the human myocardium: clinical applications. Nuc Compact 1990; 21: 213–5.

    Google Scholar 

  30. Hansen CL, Corbett JR, Pippin JJ et al. Iodine-123 phenylpentadecanoic acid and single photon emission computed tomography in identifying left ventricular regional metabolic abnormalities in patients with coronary heart disease: comparison with thallium-201 myocardial tomography. J Am Coll Cardiol 1988; 12: 78–87.

    Article  PubMed  CAS  Google Scholar 

  31. Kennedy PL, Corbett JR, Kulkarni PV et al. Iodine 123-phenylpentadecanoic acid myocardial scintigraphy: usefulness in the identification of myocardial ischemia. Circulation 1986; 74: 1007–15.

    Article  PubMed  CAS  Google Scholar 

  32. Schad N, Wagner RK, Hallermeier J, Daus HJ, Vattimo A, Bertelli P. Regional rates of myocardial fatty acid metabolism: comparison with coronary angiography and ventriculography. Eur J Nucl Med 1990; 16: 205–12.

    Article  PubMed  CAS  Google Scholar 

  33. Reske SN, Nitsch J, Von der Lohe E, Simon HJ, Bardos P. Eingeschrankte myokardiale Feltsaure-Utilisation bei koronarer Herzerkrankung nach symptomlimitierter ergometrischer Belastung. Nachweis pathologischer Stoffwechselmuster mit Hilfe von Iod-123-Phenyl-pentadekansaure und sequentieller SPECT, Bull U. Z Kardiol 1989; 78: 262–70.

    CAS  Google Scholar 

  34. Chouraqui P, Maddahi J, Henkin R, Karesh SM, Galie E, Berman DS. Comparison of myocardial imaging with iodine-123-iodophenyl-9-methyl pentadecanoic acid and thallium-201-chloride for assessment of patients with exercise-induced myocardial ischemia. J Nucl Med 1991; 32: 447–52.

    PubMed  CAS  Google Scholar 

  35. Van der Wall EE, Heidendal GA, Den Hollander W, Westera G, Roos JP. Metabolic myocardial imaging with 123I-labeled heptadecanoic acid in patients with angina pectoris. Eur J Nucl Med 1981; 6: 391–6.

    PubMed  Google Scholar 

  36. Hoeck A, Freundlieb C, Vyska K, Feinendegen LE, Rost R, Schuerch PM et al. The influence of rehabilitation training on fatty acid metabolism in patients after myocardial infarction.In: Faivre G, Bertrand A, Cherrier F, Amor M, Neiman JL, editors. Noninvasive methods in ischemic heart disease. Nancy: Specia, 1982: 300–3.

    Google Scholar 

  37. Stoddart PG, Papouchado M, Van Jones J, Wilde P. Practical and technical problems of myocardial imaging with 17-(123-iodo)-heptadecanoic acid. Nuc Compact 1990; 21: 244–7.

    Google Scholar 

  38. Van Eenige MJ, Visser FC, Duwel CM, Bezemer PD, Karreman AJ, Roos JP. Analysis of myocardial time-activity curves of 123I-heptadecanoic acid I. Curve fitting. Nuklearmedizin 1987; 26: 241–7.

    Google Scholar 

  39. Van Eenige MJ, Visser FC, Karreman AJ, Duwel CM, Bezemer PD, Roos JP. Analysis of myocardial time-activity curves of 1231-heptadecanoic acid II. The acquisition time. Nuklearmedizin 1987; 26: 248–52.

    Google Scholar 

  40. Van Eenige MJ, Visser FC, Karreman AJ, Bezemer PD, Westera G, Van Lingen A et al. Analysis of time-activity curves related to myocardial metabolism. The case of 1231-heptadecanoic acid. Nucl Med Commun 1991; 12: 115–25.

    Article  PubMed  Google Scholar 

  41. Abdullah AZ, Hawkins LA, Britton KE, Elliot AT, Stephens JD. I-123-labelled heptadecanoic acid as myocardial imaging agent: comparison with thallium-201 and first-pass nuclear ventriculography. Nucl Med Commun 1981; 2: 268–77.

    Google Scholar 

  42. Van der Wall EE, Heidendal GA, Den Hollander W, Westera G, Roos JP. I-123 labeled hexadecenoic acid in comparison with thallium-201 for myocardial imaging in coronary heart disease: a preliminary study. Eur J Nucl Med 1980; 5: 401–5.

    Article  PubMed  Google Scholar 

  43. Van der Wall EE, Den Hollander W, Heidendal GA, Westera G, Majid PA, Roos JP. Dynamic myocardial scintigraphy with 1231-labeled free fatty acids in patients with myocardial infarction. Eur J Nucl Med 1981; 6: 383–9.

    PubMed  Google Scholar 

  44. Visser FC, Westera G, Van Eenige MJ, Van der Wall EE, Heidendal GA, Roos JP. Free fatty acid scintigraphy in patients with successful thrombolysis after acute myocardial infarction. Clin Nucl Med 1985; 10: 35–9.

    Article  PubMed  CAS  Google Scholar 

  45. Reske SN. Cardiac metabolism of I-123 phenylpentadecanoic acid.In: Van der Wall EE, editor. Noninvasive imaging of cardiac metabolism: single photon scintigraphy, positron emission tomography, and nuclear magnetic resonance. Dordrecht: Martinus Nijhoff, 1987: 139–58.

    Google Scholar 

  46. Stoddart PG, Papouchado M, Wilde P. Prognostic value of 123-iodo-heptadecanoic acid imaging in patients with acute myocardial infarction. Eur J Nucl Med 1987; 12: 525–8.

    Article  PubMed  CAS  Google Scholar 

  47. Roesler H, Hess T, Weiss M et al. Tomographic assessment of myocardial metabolic heterogenity. J Nucl Med 1983; 24: 285–96.

    PubMed  CAS  Google Scholar 

  48. Rosier H, Noelpp U, Toth T, Schubiger PA, Hunziker HR. On the prognostic potential of the sequential 123-I-HDA-tomoscintigram after the first MI. Eur Heart J 1985; 6 Suppl B: 49–55.

    Google Scholar 

  49. Tillisch J, Brunken R, Marchall R et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986; 314: 884–8.

    Article  PubMed  CAS  Google Scholar 

  50. Chappuis F, Meier B, Belenger J, Blauenstein P, Lerch R. Early assessment of tissue viability with radioiodinated heptadecanoic acid in reperfused canine myocardium: comparison with thallium-201. Am Heart J 1990; 119: 833–41.

    Article  PubMed  CAS  Google Scholar 

  51. Henrich MM, Vester E, Von der Lohe E et al. The comparison of 2-F 18-deoxyglycose and 15-(ortho-123-I-phenyl)-pentadecanoic acid uptake in persisting defects on Thallium-201 tomography in myocardial infarction. J Nucl Med 1991; 32: 1353–7.

    PubMed  CAS  Google Scholar 

  52. Gibson RS, Watson DD, Craddock GB et al. Prediction of cardiac events after uncomplicated myocardial infarction: a prospective study comparing predischarge exercise thallium-201 scintigraphy and coronary angiography. Circulation 1983; 68: 321–36.

    CAS  Google Scholar 

  53. Fridrich L, Gassner A, Sommer G et al. Dynamic 123I-HDA myocardial scintigraphy after aortocoronary bypass grafting. Eur J Nucl Med 1986; 12 Suppl: 524–6.

    Article  Google Scholar 

  54. Stoddart PG, Papouchado M, Jones JV, Wilde P. Assessment of percutaneous transluminal coronary angioplasty with 123IODO-heptadecanoic acid. Eur J Nucl Med 1987; 12: 605–8.

    PubMed  CAS  Google Scholar 

  55. Kropp J, Koehler U, Nitch J, Likungu J, Biersack HJ, Knapp FF. Imaging of myocardial metabolism before and after revascularisation. Nuc Compact 1990; 21: 219–22.

    Google Scholar 

  56. Kropp J, Likungu J, Kirchhoff PG et al. Single photon emission tomography imaging of myocardial oxidative metabolism with 15-(p-[123I]iodophenyl) pentadecanoic acid in patients with coronary artery disease and aorto-coronary bypass graft surgery. Eur J Nucl Med 1991; 18: 467–74.

    Article  PubMed  CAS  Google Scholar 

  57. Fioretti P, Reijs AE, Neumann D et al. Improvement in transient and ‘persistent’ perfusion defects on early and late post-exercise thallium-201 tomograms after coronary artery bypass grafting. Eur Heart J 1988; 9: 1332–8.

    PubMed  CAS  Google Scholar 

  58. Hock A, Freundlieb C, Vyska K, Losse B, Erbel R, Feinendegen LE. Myocardial imaging and metabolic studies with [17-123I]-iodoheptadecanoic acid in patients with idiopathic congestive cardiomyopathy. J Nucl Med 1983; 24: 22–8.

    PubMed  CAS  Google Scholar 

  59. Knapp WH, Vyska K, Machulla HJ et al. Double-nuclide study of the myocardium using 201T1 and 123I-labeled fatty acids in non-ischemic myocardial diseases. Nuklearmedizin 1988; 27: 72–8.

    CAS  Google Scholar 

  60. Schad N, Daus HJ, Ciavolella M, Maccio A. Noninvasive functional imaging of regional rate of myocardial fatty acids metabolism. Cardiologia 1987; 32: 239–47.

    CAS  Google Scholar 

  61. Ugolini V, Hansen CL, Kulkarni PV, Jansen DE, Akers MS, Corbett JR. Abnormal myocardial fatty acid metabolism in dilated cardiomyopathy detected by iodine-123 phenylpentadecanoic acid and tomographic imaging. Am J Cardiol 1988; 62: 923–8.

    Article  PubMed  CAS  Google Scholar 

  62. Rabinovitch MA, Kalff V, Allen R et al. ω-123I-hexadecanoic acid metabolic probe of cardiomyopathy. Eur J Nucl Med 1985; 10: 222–7.

    Article  PubMed  CAS  Google Scholar 

  63. Livni E, Elmaleh DR, Barlai-Kovach MM, Goodman MM, Knapp FF Jr, Strauss HW. Radioiodinated beta-methyl phenyl fatty acids as potential tracers for myocardial imaging and metabolism. Eur Heart J 1985; 6 Suppl B: 85–9.

    Article  PubMed  CAS  Google Scholar 

  64. Notohamiprodjo G, Vyska K, Knapp WH et al. Fatty acid extraction in hypertrophied myocardium in hypertensive heart disease. Nuc Compact 1990; 21: 241–3.

    Google Scholar 

  65. Wolfe CL, Kennedy PL, Kulkarni PV, Jansen DE, Gabliani GI, Corbett JR. Iodine-123 phenylpentadecanoic acid myocardial scintigraphy in patients with left ventricular hypertrophy: alterations in left ventricular distribution and utilization. Am Heart J 1990; 119: 1338–47.

    Article  PubMed  CAS  Google Scholar 

  66. Som P, Oster ZH, Kubota K et al. Studies of a new fatty acid analog (DMIVN) in hypertensive rats and the effect of verapamil using ARG microimaging. Int J Rad Appl Instrum [B] 1989; 16: 483–90.

    Article  CAS  Google Scholar 

  67. Fridrich L, Havel M, Horvat R, Wollenek G, Laczkovics A. Myocardial fatty acid metabolism in patients after orthotopic heart transplantation. Nuc Compact 1990; 21: 216–8.

    Google Scholar 

  68. Voth E, Schicha H, Tebbe U, Neumann P, Emrich D. Fatty acid metabolism in symptomatic patients with mitral valve prolapse but without coronary artery disease-comparison with 201T1 myocardial perfusion scintigraphy. Nuklearmedizin 1987; 26: 172–6.

    CAS  Google Scholar 

  69. Van Eenige MJ, Visser FC, Duwel CM, Karreman AJ, Van Lingen A, Roos JP. Comparison of 17-iodine-131 heptadecanoic acid kinetics from externally measured time-activity curves and from serial myocardial biopsies in an open-chest canine model. J Nucl Med 1988; 29: 1934–42.

    PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Visser, F.C., Sloof, G.W., Knapp, F.F. (1992). Myocardial metabolic imaging with iodine-123 fatty acids. In: van der Wall, E.E., Sochor, H., Righetti, A., Niemeyer, M.G. (eds) What’s New in Cardiac Imaging?. Developments in Cardiovascular Medicine, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2456-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2456-0_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5083-8

  • Online ISBN: 978-94-011-2456-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics