Skip to main content

Quantification of myocardial perfusion with oxygen-15 water

  • Chapter
What’s New in Cardiac Imaging?

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 133))

  • 80 Accesses

Abstract

Assessment of regional myocardial perfusion at rest or in response to exercise or pharmacologic interventions, is crucial in the diagnosis of coronary artery disease and in the evaluation of the efficacy of therapies designed to restore nutritive perfusion. In some instances, such as in the diagnosis of high-grade, single-vessel coronary artery disease, qualitative assessment of myocardial perfusion with conventional nuclear medicine techniques may suffice. However, quantitative estimates (e.g., ml/g/min) are necessary for the objective evaluation of myocardial perfusion reserve (the ability of the vasculature to increase perfusion maximally in response to a hyperemic stimulus) and may be important for the evaluation of patients in whom myocardial uptake of flow tracers may be homogeneous (without regional disparities), such as those with chest pain but angiographically normal coronary arteries, those who have undergone cardiac transplantation, those with cardiomyopathy, and those with balanced lesions or multivessel coronary artery disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmann SR, Fox KA, Geltman EM, Sobel BE. Positron emission tomography of the heart. Prog Cardiovasc Dis 1985; 28: 165–94.

    Article  PubMed  CAS  Google Scholar 

  2. Bergmann SR, Fox KA, Rand AL et al. Quantification of regional myocardial blood flow in vivo with H2 15O. Circulation 1984; 70: 724–33.

    Article  PubMed  CAS  Google Scholar 

  3. Knabb RM, Fox KA, Sobel BE, Bergmann SR. Characterization of the functional significance of subcritical coronary stenoses with H2 15O and positron emission tomography. Circulation 1985; 71: 1271–8.

    Article  PubMed  CAS  Google Scholar 

  4. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989; 14: 639–52.

    Article  PubMed  CAS  Google Scholar 

  5. Kety S. Theory and applications of exchange of inert gas at lungs and tissues. Pharmacol Rev 1951; 3: 1–41.

    PubMed  CAS  Google Scholar 

  6. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 1983; 24: 782–9.

    PubMed  CAS  Google Scholar 

  7. Raichle ME, Martin WR, Herscovitch P, Mintun MA, Markham J. Brain blood flow measured with intravenous H2 15O. II. Implementation and validation. J Nucl Med 1983; 24: 790–8.

    PubMed  CAS  Google Scholar 

  8. Tripp MR, Meyer MW, Einzig S, Leonard JJ, Swayze CR, Fox IJ. Simultaneous regional myocardial blood flows by tritiated water and microspheres. Am J Physiol 1977; 232: H173–90

    Google Scholar 

  9. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979; 3: 299–308

    Article  PubMed  CAS  Google Scholar 

  10. Huang S-C, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 1979; 3: 804–14.

    PubMed  CAS  Google Scholar 

  11. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981; 5: 391–400.

    Article  PubMed  CAS  Google Scholar 

  12. Henze E, Huang SC, Ratib O, Hoffman E, Phelps ME, Schelbert HR. Measurements of regional tissue and blood-pool radiotracer concentrations from serial tomographic images of the heart. J Nucl Med 1983; 24: 987–96.

    PubMed  CAS  Google Scholar 

  13. Herrero P, Markham J, Myears DW, Weinheimer CJ, Bergmann SR. Measurement of myocardial blood flow with positron emission tomography: correction for count spillover and partial volume effects. Math Comput Modelling 1988; 11: 807–12.

    Article  Google Scholar 

  14. Iida H, Kanno I, Takahashi A. et al. Measurement of absolute myocardial blood flow with H2 15O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988; 78: 104–15.

    Article  PubMed  CAS  Google Scholar 

  15. Herrero P, Markham J, Bergmann SR. Quantitation of myocardial blood flow with H2 15O and positron emission tomography: assessment and error analysis of a mathematical approach. J Comput Assist Tomogr 1989; 13: 862–73.

    Article  PubMed  CAS  Google Scholar 

  16. Araujo LI, Lammertsma AA, Rhodes CG et al. Noninvasive quantification of regional myocardial blood flow in coronary artery disease with oxygen-15-labeled carbon dioxide inhalation and positron emission tomography. Circulation 1991; 83: 875–85.

    Article  PubMed  CAS  Google Scholar 

  17. Senneff MJ, Geltman EM, Bergmann SR. Noninvasive delineation of the effects of moderate aging on myocardial perfusion. J Nucl Med 1991; 32: 2037–42.

    PubMed  CAS  Google Scholar 

  18. Walsh MN, Geltman EM, Steel RL et al. Augmented myocardial perfusion reserve after coronary angioplasty quantified by positron emission tomography with H2 15O. J Am Coll Cardiol 1990;15:119–27.

    Article  PubMed  CAS  Google Scholar 

  19. Henes CG, Bergmann SR, Perez JE, Sobel BE, Geltman EM. The time course of restoration of nutritive perfusion, myocardial oxygen-consumption, and regional function after coronary thrombolysis. Coronary Artery Dis 1990; 1: 687–96.

    Article  Google Scholar 

  20. Geltman EM, Henes CG, Senneff MJ, Sobel BE, Bergmann SR. Increased myocardial perfusion at rest and diminished perfusion reserve in patients with angina and angiographically normal coronary arteries. J Am Coll Cardiol 1990; 16: 586–95.

    Article  PubMed  CAS  Google Scholar 

  21. Senneff MJ, Genton RE, Kenzora JL et al. Perfusion abnormalities in cardiac allografts demonstrable with positron emission tomography (PET) [abstract]. J Nucl Med 1990; 31 Suppl: 841.

    Google Scholar 

  22. Bergmann SR. Assessment of myocardial perfusion with PET. In: Bergmann SR, Sobel BE, editors. Positron emission tomography of the heart. New York: Futura Publishing (in press).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrero, P., Bergmann, S.R. (1992). Quantification of myocardial perfusion with oxygen-15 water. In: van der Wall, E.E., Sochor, H., Righetti, A., Niemeyer, M.G. (eds) What’s New in Cardiac Imaging?. Developments in Cardiovascular Medicine, vol 133. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2456-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2456-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5083-8

  • Online ISBN: 978-94-011-2456-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics