Skip to main content

Quantification of control of microbial metabolism by substrates and enzymes

  • Chapter
  • 194 Accesses

Abstract

The control of substrates or enzymes on metabolic processes can be expressed in quantitative terms. Most of the experimental material found in the literature, however, has been obtained under non-standardized conditions, precluding definite conclusions concerning the magnitude of control. A number of representative examples is discussed and it is concluded that a quantitative analysis of the factors that control metabolism is essential for understanding the microbial behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking H & Tempest DW (1976) Growth and physiology of Candida utilisNCYC321 in potassium-limited chemostat culture. Arch. Microbiol. 108: 117–124

    Article  PubMed  CAS  Google Scholar 

  • Ataai MM & Shuler ML (1987) A mathematical model for prediction of plasmid copy number and genetic stability in Escherichia coli. Biotechnol. Bioeng. 30: 389–397

    Article  PubMed  CAS  Google Scholar 

  • Birkenhead K., Manian SS & O’Gara F (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J. Bact. 170: 184–189

    PubMed  CAS  Google Scholar 

  • Bremer H & Dennis PP (1987) Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhart FC (Ed) Escherichia tali and Salmonella typhimurium: Cellular and Molecular Biology, Vol 2 (pp 1527–1542). ASM, Washington DC

    Google Scholar 

  • Brinkman U, Mueller RH & Babel W (1990) The growth rate-limiting reaction in methanol-assimilating yeasts. FEMS Microbiol. Rev. 87: 261–266

    Article  Google Scholar 

  • Buurman ET, Pennock J, Tempest DW, Teixeira de Mattos MJ & Neijssel OM (1989) Replacement of potassium ions by ammonium ions in different microorganisms grown in potassium-limited chemostat culture. Arch. Microbiol. 152: 58–63

    Article  PubMed  CAS  Google Scholar 

  • Dabes JN, Finn RK & Wilke CR (1973) Equations of substrate-limited growth. Case for Blackman kinetics. Biotech. Bioeng. 15: 1159–1177

    Article  CAS  Google Scholar 

  • Dean AM, Dykhuizen DE & Hartl DL (1986) Fitness as a function of (3-galactosidase activity in Escherichia coli. Genet. Res. Camb. 48: 1–8

    Article  CAS  Google Scholar 

  • Domach MM, Leung SK, Cahn RE, Cocks GG & Shuler ML (1984) Computer model for glucose-limited growth of a single cell of Escherichia colt B/r-A. Biotechnol. Bioeng. 26: 203–216

    Article  CAS  Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272

    CAS  Google Scholar 

  • Dykhuizen DE, Dean AM & Hartl D (1987) Metabolic fluxes and fitness. Genetics 115: 25–31

    PubMed  CAS  Google Scholar 

  • Erickson LE, Minkevich IG & Eroshin VK (1978) Utilization of mass-energy balance regularities in the analysis of continuous-culture data. Biotech. Bioeng. 20: 1595–1621

    Article  CAS  Google Scholar 

  • Flint HJ, Porteous DJ & Kacser H (1980) Control of the flux in the arginine pathway of Neurospora crassa. Biochem. J. 190: 1–15

    PubMed  CAS  Google Scholar 

  • Flint HI, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD & Kacser H (1981) Control of the flux in the arginine pathway of Neurospora crassa. Biochem. J. 200: 231–246

    PubMed  CAS  Google Scholar 

  • Galazzo JL & Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microh. Technol. 12: 162–172

    Article  CAS  Google Scholar 

  • Groen AK (1984) Quantification of control studies on intermediary metabolism. PhD Thesis, University of Amsterdam

    Google Scholar 

  • Hartl DL, Dykhuizen DE & Dean A (1985) Limits of adaption: the evolution of selective neutrality. Genetics 111: 655–674

    PubMed  CAS  Google Scholar 

  • Heinrich R & Rapoport TA (1973) Linear theory of enzymatic chains: its application for the catalysis of the crossover theorem and of the glycolysis of human erythrocytes. Acta Biol. Med. Germ. 31: 479–494

    PubMed  CAS  Google Scholar 

  • Herbert D (1961) The chemical composition of micro-organisms as a function of their environment. In: Meynell CG & Gooder H (Eds) Microbial Reaction to the Environment. Symp. Soc. Gen. Microbiol. 11: 391–416

    Google Scholar 

  • Iwami Y & Yamada T (1985) Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect. Immun. 50: 378–381

    PubMed  CAS  Google Scholar 

  • Jensen KF & Pedersen S (1990) Metabolic growth rate control in Escherichia colt may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol. Rev. 54: 89–100

    PubMed  CAS  Google Scholar 

  • Jensen PR (1991) Growth physiology of Escherichia colistrains with variable expression of the atp operon. PhD Thesis, Dan-marks Tekniske Hojskole

    Google Scholar 

  • Joshi A & Palsson BO (1988) Escherichia colt growth dynamics: a three-pool biochemically based description. Biotech. Bioeng. 31: 102–116

    Article  CAS  Google Scholar 

  • Kacser H & Burns JA (1973) Control of [enzyme] flux. In: Davies DD (Ed) Rate Control of Biological Processes (pp 65–104). Cambridge University Press

    Google Scholar 

  • Kell DB, Wcsterhoff HV & van Dam K (1989) Control analysis of microbial growth and productivity. In: 44th Symp. Soc. Gen. Microbial, Baumberg S, Hunter L & Rhodes M (Eds) (pp 61–93). Cambridge University Press

    Google Scholar 

  • Kleman GL, Chalmers JJ, Luli GW & Strahl WR (1991) Glucose-stat, a glucose-controlled continuous culture. Appl. Environ. Microbiol. 57: 918–923

    PubMed  CAS  Google Scholar 

  • Marr AG (1991) Growth rate of Escherichia coli. Microbiol. Rev. 55: 316–333

    PubMed  CAS  Google Scholar 

  • Minkevich IG, Krinitzkaya AY & Eroshin VK (1988) A double substrate limitation zone of continuous microbial growth. In: Kyslic P, Dawes EA, Klumphanzl V & Novak M (Eds) Continuous Culture (pp 171–184). Academic Press, London

    Google Scholar 

  • Monod J (1942) Recherches sur la croissance des cultures bacteriennes. Herman et Cie, Paris

    Google Scholar 

  • Mulder MM (1988) Energetic aspects of bacterial growth: a mosaic non-equilibrium thermodynamic approach. PhD thesis, University of Amsterdam

    Google Scholar 

  • Mulder MM, van der Gulden HML, Postma PW & van Dam K (1989) Macromolecular composition of Klebsiella aerogenesNCTC 418 under glucose-and ammonia-limiteed conditions in continuous culture. Biochim. Biophys. Acta 936: 406–412

    Google Scholar 

  • Neijssel OM, Hueting S & Tempest DW (1977) Glucose transport capacity is not the rate-limiting step in the growth of some wild-type strains of Escherichia colt and Klebsiella aerogenes in chemostat culture. FEMS Microbiol. Lett. 2: l-3

    Article  Google Scholar 

  • O’Brien RW, Neijssel OM & Tempest DW (1980) Glucose: phosphocnolpyruvatc phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. J. Gen. Microbiol. 116: 305–314

    PubMed  Google Scholar 

  • Owens JD & Legan JD (1987) Determination of the Monod substrate saturation constant for microbial growth. FEMS Micobiol. Rev. 46: 419–432

    Article  CAS  Google Scholar 

  • Poolman B, Bosman B, Kiers J & Konings WN (1987) Control of glycoIysis by glyeeraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lattis. J. Batt. 169: 5887–5890

    CAS  Google Scholar 

  • Poolman B & Konings WN (1988) Relation of growth of Streptococcus lactic and Streptococcus cremoristo amino acid transport. J. Batt. 170: 700–707

    CAS  Google Scholar 

  • Portillo F & Serrano R (1989) Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. Eur. J. Biochem. 186: 501–507

    Article  PubMed  CAS  Google Scholar 

  • Postma E, Scheffers WA & van Dijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeast Candida utilis CBS621: a continuous culture study. J. Gen. Microbiol. 134: 1109–1116

    CAS  Google Scholar 

  • Postma PW & Lengeler J (1985) Phosphoenolpyruvate: carbohydrate phopsphotransferase system of bacteria. Microbiol. Rev. 49: 232–269

    PubMed  CAS  Google Scholar 

  • Powell EO (1967) Microbial physiology and continuous culture; In: Powell EO, Evans CGT, Strange RE & Tempest DW (Eds) Proceedings of the Third Int.Symp. (pp 34–55). HMSO, London

    Google Scholar 

  • Roels JA (1980) Bioengineering report. Application of macroscopic principles to microbial metabolism. Biotech. Bioeng. 22:2457–2514

    Article  CAS  Google Scholar 

  • Ruijter G, Postma PW & van Dam K (1991) Control on glucose metabolism by Enzyme II of the phosphoenolpyruvatedependent phosphotransferase system in Escherichia colt. J. Bacteriol. (in press)

    Google Scholar 

  • Rutgers M (1990) Control and thermodynamics of microbial growth PhD Thesis, University of Amsterdam

    Google Scholar 

  • Rutgers M, Teixeira de Mattos MI, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae. J. Gen. Microbiol. 133: 445–451

    PubMed  CAS  Google Scholar 

  • Rutgers M, Balk PA & van Dam K (1989) Effect of concentration of substrates and products on the growth of Klebsiella pneumoniae in chemostat cultures. Biochim. Biophys. Acta 977: 142–149

    Article  PubMed  CAS  Google Scholar 

  • Rutgers M, Balk PA & van Dam K (1990) Quantification of multiple-substrate controlled growth. Simultaneous ammonium and glucose limitation in chemostat culturs of Klebsiella pneumoniae. Arch. Microbiol. 153: 478–484

    Article  PubMed  CAS  Google Scholar 

  • Schaaff I, Heinisch J & Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5: 285–290

    Article  PubMed  CAS  Google Scholar 

  • Schulze KL & Lipe RS (1964) Relationship between substrate concentration. growth rate and respiration rate of Escherichia colt in continuous culture. Archiv. für Mikrobiol. 48: 1–20

    Article  CAS  Google Scholar 

  • Senn HP (1989) Kinetik und Regulation des Zuckerabbaus von Escherichia colt ML30 bei tiefen Zuckerkonzentrationen; PhD thesis, ETH Zürich

    Google Scholar 

  • Shu J & Shuler ML (1989) A mathematical model for the growth of a single cell of E.coli on a glucose/glutamine/ammonium medium. Biotechnol. Bioeng. 33: 1117–1126

    Article  PubMed  CAS  Google Scholar 

  • Shuler ML, Leung S & Dick CC (1979) A mathematical model for the growth of a single bacterial cell. Ann. N. Y. Acad. Sci. 326: 35–55

    Article  CAS  Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545–565

    Article  PubMed  CAS  Google Scholar 

  • Stouthamer AH, Bulthuis B & Van Verseveld HW (1990) Energetics of growth at low growth rates and its relevance for the maintenance concept. In: Poole RK, Bazin MJ & Kcevil CW (Eds) Microbial Growth Dynamics, Vol 28 (pp 85–102). SGM Publications

    Google Scholar 

  • Stueland CS, Gorden K & LaPorte DC (1988) The isocitrate dehydrogenase phosphorylation cycle; identification of the primary rate-limiting step. J. Biol. Chem. 263: 19475–19479

    PubMed  CAS  Google Scholar 

  • Valinger R, Braus G, Niederberger P, Künzler M, Paravicini G, Schmidheini T & Hütter R (1989) Cloning of the LEU2 gene of Saccharomyces cerevisiae by in vivo recombination. Arch. Microbiol. 152: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Walsh K & Koshland D (1985) Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. J. Biol. Chem. 82: 3577–3581

    CAS  Google Scholar 

  • Westerhoff HV, Lolkema JS, Otto R & Hellingwerf KJ (1982) Thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim. Biophys. Acta 683: 181–220

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV & van Dam K (1987) Thermodynamics and Control of Biological Free-energy Transduction. Elsevier, Amsterdam

    Google Scholar 

  • Westerhoff HV, van Heeswijk W, Kahn D & Kell DB (1992) Antonie van Leeuwenhoek 60 (this issue)

    Google Scholar 

  • Westerhoff HV, Koster JG, van Workum M & Rudd KE (1990) On the control of gene expression. In: Cornish-Bowden A & Luz Cardenas M (Eds) Control of Metabolic Processes. NATO ASI Series A: Life Sciences, Vol 190 (pp 399–412)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van Dam, K., Jansen, N. (1992). Quantification of control of microbial metabolism by substrates and enzymes. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics