Skip to main content

Abstract

The stoichiometric limit to the biomass yield (maximal assimilation of the carbon source) is determined by the amount of CO2 lost in anabolism and the amount of carbon source required for generation of NADPH. This stoichiometric limit may be reached when yeasts utilize formate as an additional energy source. Factors affecting the biomass yield on single substrates are discussed under the following headings:

  • Energy requirement for biomass formation (YATP). YATP depends strongly on the nature of the carbon source.

  • Cell composition. The macroscopic composition of the biomass, and in particular the protein content, has a considerable effect on the ATP requirement for biomass formation. Hence, determination of for instance the protein content of biomass is relevant in studies on bioenergetics.

  • Transport of the carbon source. Active (i.e. energy-requiring) transport, which occurs for a number of sugars and polyols, may contribute significantly to the calculated theoretical ATP requirement for biomass formation.

  • P/O-ratio. The efficiency of mitochondrial energy generation has a strong effect on the cell yield. The P/O-ratio is determined to a major extent by the number of proton-translocating sites in the mitochondrial respiratory chain.

  • Maintenance and environmental factors. Factors such as osmotic stress, heavy metals, oxygen and carbon dioxide pressures, temperature and pH affect the yield of yeasts. Various mechanisms may be involved, often affecting the maintenance energy requirement.

  • Metabolites such as ethanol and weak acids. Ethanol increases the permeability of the plasma membrane, whereas weak acids can act as proton conductors.

  • Energy content of the growth substrate. It has often been attempted in the literature to predict the biomass yield by correlating the energy content of the carbon source (represented by the degree of reduction) to the biomass yield or the percentage assimilation of the carbon source. An analysis of biomass yields of Candida utilis on a large number of carbon sources indicates that the biomass yield is mainly determined by the biochemical pathways leading to biomass formation, rather than by the energy content of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander B, Leach S & Ingledew JW (1987) The relationship between chemiosmotic parameters and sensitivity to anions and organic acids in the acidophile Thiobacillus ferrooxidans. J. Gen. Microbial. 133: 1171–1179

    CAS  Google Scholar 

  • Alexander MA & Jeffries TW (1990) Respiratory efficiency and metabolite partitioning as regulatory phenomena in yeasts. Enzyme Microb. Technol. 12: 2–19

    Article  CAS  Google Scholar 

  • Andreasen AA & Stier TJB (1953) Anaerobic nutrition of Saccharomyces cerevisiae. I. Ergosterol requirment for growth in a defined medium. J. Cell. Comp. Physiol. 41: 23–26

    Article  CAS  Google Scholar 

  • Andreasen AA & Stier TJB (1954)Anaerobic nutrition of Saccharomyces cerevisiae. II. Unsaturated fatty acid requirement for growth in a defined medium. J. Cell. Comp. Physiol. 43: 271–281

    Article  CAS  Google Scholar 

  • Asano A, Imai K & Sato R (1967) Oxidative phosphorylation in Micrococcus denitrificans. II. The properties of pyridine nucleotide transhydrogenase. Biochim. Biophys. Acta 143: 477–486

    Article  PubMed  CAS  Google Scholar 

  • Atkinson B & Mavituna F (1983) Biochemical Engineering and Biotechnology Handbook (pp 120–125). The Nature Press, New York

    Google Scholar 

  • Babel W, Müller RH & Markuske KD (1983) Improvement of growth yield on glucose to the maximum by using an additional energy source. Arch. Mcrobiol. 136: 203–208

    Article  CAS  Google Scholar 

  • Baranowski K & Radler F (1984) The glucose dependent transport of L-malate in Zygosacchromyces bailü. A. v. Leeuwenhoek 50, 329–340

    Article  CAS  Google Scholar 

  • Bauchop T & Elsden SR (1960) The growth of micro-organisms in relation to their energy supply. J. Gen. Microbiol. 23: 457–469

    Article  PubMed  CAS  Google Scholar 

  • Beudeker RF, van Dam HW, van der Plaat JB & Vellenga K (1990) Developments in baker’s yeast production. In: Verachtert H & de Mot R (Eds) Yeast biotechnology and Biocatalysis (pp 103–145). Marcel Dekker Inc., New York & Basel

    Google Scholar 

  • Birou B, Marison IW & Von Stockar U (1987) Calorimetric investigation of aerobic fermentations. Biotechnol. Bioeng. 30: 650–660

    Article  PubMed  CAS  Google Scholar 

  • Boveris A (1978). Production of superoxide anion and hydrogen peroxide in yeast mitochondria. In: Bacila M, Horecker BL & Stoppani AOM (Eds) Biochemistry and Genetics of Yeasts: Pure and Applied Aspects (pp 65–80). Academic Press, New York, San Francisco and London

    Google Scholar 

  • Brown CM & Rose AH (1969) Effects of temperature on composition and cell volume of Candida utilis. J. Bacteriol. 97: 262–272

    Google Scholar 

  • Bruinenberg PM, van Dijken JP & Scheffers WA (1983a) An enzymic analysis of NADPH production and consumption in Candida utilis. J. Gen. Microbiol. 129: 965–971

    CAS  Google Scholar 

  • Bruinenberg PM, van Dijken JP & Scheffers WA (1983b) A theoretical analysis of NADPII production and consumption in yeasts. J. Gen. Microbiol. 129: 953–964

    CAS  Google Scholar 

  • Bruinenberg PM, Jonker R, van Dijken JP & Scheffers WA (1985) Utilization of formate as an additional energy source by glucose-limited chemostat cultures of Candida utilis CBS 621 and Saccharomyces cerevisiae CBS 8066. Evidence for the absence of transhydrogenase activity in yeasts. Arch. Microbiol. 142: 302–306

    Article  CAS  Google Scholar 

  • Bruinenberg PM, Waslander GW, van Dijken JP & Scheffers WA (1986) A comparative radiorespirometric study of glucose metabolism in yeasts. Yeast 2: 117–121

    Article  PubMed  CAS  Google Scholar 

  • Cadenas E, Brigelius R, Akerboom Th & Sies H (1983) Oxygen radicals and hydroperoxides in mammalian organs: aspects of redox cycling and hydrogen peroxide metabolism. In: Sund H & Ullrich V (Eds) Biological Oxidations (pp 288–310). Springer-Verlag, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Carr RJG, Bilton RF & Atkinson T (1986) Toxicity of paraquat to microorganisms. Appl. Env. Microbiol. 52: 1112–1116

    CAS  Google Scholar 

  • Cartwright CP, Juroszek JR, Beavan MJ, Ruby FMS, Morais SMF & Rose AH (1986) Ethanol dissipates the proton-motive force across the plasma membrane of Saccharomyces cerevisiae. J. Gen. Microbiol. 132: 369–377

    CAS  Google Scholar 

  • Cartwright CP, Veazey FJ & Roase AH (1987) Effect of ethanol on activity of the plasma membrane ATPase in. and accumulation of glycine by, Saccharomyces cerevisiae. Appl. Environ. Microbiol. 53: 509–513

    Google Scholar 

  • Cason DT, Spencer Martins I & van Eden N (1986) Transport of fructose by a proton symport in a brewing yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 36: 307–310

    Article  CAS  Google Scholar 

  • Cassio F, Leao C & van Eden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Saccharomyces cerevisiae, Appl. Env. Microbiol, 53: 509–513

    Google Scholar 

  • Chang EC & Kosman DJ (1989) Intracellular Mn(II)-associated superoxide scavenging activity protects Cu,Zn superoxide dismutase deficient Saccharomyces cerevisiae against dioxygen stress. J. Biol. Chem. 264: 12172–12178

    PubMed  CAS  Google Scholar 

  • Chen SL & Gutmanis F (1976) Carbon dioxide inhibition of yeast growth in biomass production. Biotechnol. Bioeng. 18: 1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Strathern JN, Jones EW & Broach JR (Eds) The Molecular Biology of the Yeast Saccharomyces. Metabolism and Gene Expression (pp 400–461). Cold Spring Harbor Lab., New York

    Google Scholar 

  • D’Amore T & Stewart GG (1987) Ethanol tolerance of yeast. Enzyme Microb. Technol. 9: 322–330

    Article  Google Scholar 

  • Dasari G, Worth MA, Connor MA & Pamment NB (1990) Reasons for the apparent difference in the effects of produced and added ethanol on culture viability during rapid fermentations by Saccharomyces cerevisiae. Biotechnol. Bioeng. 35: 109–122

    Article  PubMed  CAS  Google Scholar 

  • Dekkers JGJ, de Kok HE & Roels JA (1981) Energetics of Sacchromyces cerevisiae CBS 426: comparison of anaerobic and aerobic glucose limitation. Biotechnol. Bioeng. 23: 1023–1035

    Article  CAS  Google Scholar 

  • De Vries S & Marres CAM (1987) The mitochondrial respiratory chain of yeast. Structure and biosynthesis and the role in cellular metabolism. Biochim. Biophys. Acta 895: 205–239

    Article  PubMed  Google Scholar 

  • Eddy AA & Hopkins PG (1985) The putative electrogenic nitrate-protonsymport of the yeast Candida utilis. Comparison with the systems absorbing glucose or lactate. Biochem. J. 231: 291–297

    PubMed  CAS  Google Scholar 

  • Egli T. (1980) Wachstum von Methanol assimilierenden Hefen. Diss. ETH Nr.6538, Zürich, Switzerland

    Google Scholar 

  • Egli T & Quayle JR (1986) Influence of the carbon-nitrogen ratio of the growth mdium on the cellular composition and the ability of the methylotrophic yeast Hansenula polymorpha to utilize mixed carbon sources. J. Gen. Microbiol. 132: 1779–1788

    CAS  Google Scholar 

  • Eraso P & Gancedo C (1987) Activation of yeast plasma membrane ATPase by acid pH during growth. FEBS 224: 187–192

    Article  CAS  Google Scholar 

  • Eroshin VK, Utkin IS, Ladynichev SA, Samoylov VV, Kuvshinnikov VD & Skryabin GK (1976) Influence of pH and temperature on the substrate yield coefficient of yeast growth in a chemostat. Biotechnol. Bioeng. 18: 289–295

    Article  CAS  Google Scholar 

  • Essia Ngang JJ, Letourneau F & Villa P (1989) Alcoholic fermentation of beet molasses: effects of lactic acid on yeast fermentation parameters. Appl. Microbiol. Biotechnol. 31: 125–128

    Article  Google Scholar 

  • Favre E, Pugeaud P, Raboud JP & Peringer P (1989) Automated HPLC monitoring of broth components on bioreactors. J. Auto. Chem. 11: 280–283

    Article  CAS  Google Scholar 

  • Fiechter A, Käppeli O & Meussdoerffer F (1989) Batch and continuous cultures. In: Rose AH & Harrison JS (Eds) The Yeasts, Vol 2 (pp 99–129). Academic Press, London

    Google Scholar 

  • Fründ C, Priefert H, Steinbüchel A & Schlegel H (1989) Biochemical and genetical analysis of acetoin catabolism in Alcaligenes eutrophus. J. Bacteriol. 171: 6539–6548

    PubMed  Google Scholar 

  • Gancedo C, Gancedo JM & Sols A (1968) Glycerol metabolism in yeasts. Pathways of utilization and production. Eur. J. Biochem. 5: 165–172

    Article  PubMed  CAS  Google Scholar 

  • Goffeau A & Crosby B (1978) A new type of cyanide-insensitive, azide-sensitive respiration in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae. In: Bacile M, Horecker BL & Stoppani AOM (Eds) Biochemistry and Genetics of Yeasts (pp 81–96). Academic Press, New York

    Google Scholar 

  • Goldberg I (1985) Single cell protein (p 79). Springer Verlag, Berlin Heidelberg

    Book  Google Scholar 

  • Gomez A & Castillo FJ (1983) Production of biomass and ß-D-galactosidase by Candida pseudotropicalis grown in continuous culture on whey. Biotechnol. Bioeng. 25: 1341–1357

    Article  PubMed  CAS  Google Scholar 

  • Gommers PJF, van Schie BJ, van Dijken JP & Kuenen JG (1988) Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization. Biotechnol. Bioeng. 32: 86–94

    Article  PubMed  CAS  Google Scholar 

  • Gunsalus IC & Shuster CW (1961) Energy-yielding metabolism in bacteria. In: Gunsalus IC and Stanier RY (Eds) The Bacteria, Vol 2 (pp 1–58). Academic Press, New York and London

    Google Scholar 

  • Harder W & Veldkamp H (1967) A continous culture of an obligately psychrophilic Pseudomonas species. Archiv für Mikrobiologie 59: 123–130

    Article  PubMed  CAS  Google Scholar 

  • Harder W & van Dijken JP (1976) Theoretical culculations on the realtion between energy production and growth of methane-utilizing bacteria. In: Microbial Production and Utilization of Gases (pp 403–418). E. Goltze Verlag, Göttingen

    Google Scholar 

  • Heijnen JJ & Roels JA (1981) A macroscopic model describing yield and maintenance relationships in aerobic fermentation processes. Biotechnol. Bioeng. 23: 739–763

    Article  CAS  Google Scholar 

  • Higgins CF, Cairney J. Stirling DA, Sutherland L & Booth IR (1987) Osmotic regulation of gene expression: ionic strength as an intracellular signal. Trends Biochem. Sci. 12: 339–344

    Article  CAS  Google Scholar 

  • Höfer M & Misra PC (1978) Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Biochem. J. 172: 15–22

    PubMed  Google Scholar 

  • Höfer M, Nicolay K & Robillard G (1985) The electrochemical H` gradient in the yeast Rhodotorula glutinis. J. Bioenerg. Biomembr. 17: 175–182

    Article  PubMed  Google Scholar 

  • Ingram LO & Buttke T (1984) Effects of alcohol on microorganisms. Adv. Microbial Physiol. 25: 254–290

    Google Scholar 

  • Jay MJ (1978) In: Modern Food Microbiology (pp 163–165) D. van Nostrand Comp., New York, Cincinnati. Toronto, London, Melbourne

    Google Scholar 

  • Jones CW, Brice JM & Edwards C (1977) The effect of respiratory chain composition on the growth efficiencies of aerobic bacteria. Arch. Mikrobiol. 115: 85–93

    CAS  Google Scholar 

  • Jones RP & Greenfield PF (1982) Effect of carbon dioxide on yeast growth and fermentation. Enz. Microb. Technol. 4: 210–223

    Article  CAS  Google Scholar 

  • Jones RP & Greenfield PF (1984) A review of yeast ionic nutrition. Part I: growth and fermentation requirements. Process Biochem. 19: 48–60

    CAS  Google Scholar 

  • Jones RP & Greenfield PF (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast 3: 223–232

    Article  PubMed  CAS  Google Scholar 

  • Jones RP & Gadd GM (1990) Ionic nutrition of yeast - physiological mechanisms involved and implications for biotechnology. Enzyme Microb. Technol. 12: 402–418

    Article  CAS  Google Scholar 

  • Jovall P-A, Tunblad-Johansson I & Adler L (1990) 13C NMR analysis of production and accumulation of osmoregulatory metabolites in the salt-tolerant yeast Debaromyces hansenii. Arch. Microbiol. 154: 209–214

    Article  CAS  Google Scholar 

  • Kotyk A & Alonso A (1985) Transport of ethanol in baker’s yeast. Folia Microbiol. 30: 90–91

    Article  CAS  Google Scholar 

  • Küenzi M (1970) Uber der Reservekohlenhydratstoffwechsel von Saccharomyces cerevisiae. Diss. Nr. 4544, ZÃœrich, Switzerland

    Google Scholar 

  • Lafon-Lafourcade S, Geneix C & Ribereau-Gayon P (1984) Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl. Env. Microbiol. 47: 1246–1249

    CAS  Google Scholar 

  • Lang JM & Cirillo VP (1987) Glucose uptake in a kinaseless Saccharomyces cerevisiae mutant. J. Bacteriol. 169: 2932–2937

    PubMed  CAS  Google Scholar 

  • Larsson C & Gustafsson (1987) Glycerol production in relation to the ATP pool and heat production rate of the yeasts Debaromyces hansenii and Saccharomyces cerevisiae during salt stress. Arch. Microbiol. 147: 358–363

    Article  PubMed  CAS  Google Scholar 

  • Leao C & van Uden N (1984) Effects of ethanol and other alkanols on passive proton influx in the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 774: 43–48

    Article  PubMed  CAS  Google Scholar 

  • Leao C & van Uden N (1986) Transport of lactate and other short-chain monocarboxylates in the yeast Candida utilis. Appl. Microbiol. Biotechnol. 23: 389–393

    Article  CAS  Google Scholar 

  • Lee FJ & Hassan HM (1987) Biosynthesis of superoxide dismutase and catalase in chemostat cultures of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 26: 531–536

    Article  CAS  Google Scholar 

  • Linton JD & Stephenson RJ (1978) A preliminary study on the growth yields in relation to the carbon and energy content of various organic growth substrates. FEMS Microbiol. Lett. 3: 95–98

    Article  CAS  Google Scholar 

  • Linton JD & Rye AJ (1989) The relationship between the energetic efficiency in different microorganisms and the rate and type of metabolite overproduced. J. Indust. Microbiol. 4: 85–96

    Article  CAS  Google Scholar 

  • Lloyd D (1974) In: The mitochondria of microorganisms, pp 89–90. Academic Press, London

    Google Scholar 

  • Loureiro-Dias MC & Santos H (1990) Effects of ethanol on Saccharomyces cerevisiae as monitored by in vivo 31P and 13C nuclear magnetic resonance. Arch. Microbiol. 153: 384–391

    Article  PubMed  CAS  Google Scholar 

  • Lucas C, da Costa M & van Uden N (1990) Osmoregulatory active sodium-glycerol co-transport in the halotolerant yeast Debaromyces hansenii. Yeast 6: 187–191

    Article  Google Scholar 

  • Lueck E (1980) In: Antimicrobial food additives (pp 210–217). Springer Verlag, Berlin, Heidelberg, New York

    Chapter  Google Scholar 

  • Maiorella B, Blanch HW & Wilke CR (1983) By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 103–121

    Article  PubMed  CAS  Google Scholar 

  • Maiorella B, Blanch HW & Wilke CR (1984) Feed component inhibition in ethanolic fermentation by Saccharomyces cerevisiae. Biotechnol. Bioeng. 26: 1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Malpartida F & Serrano R (1981) Proton translocation catalyzed by the purified yeast plasma membrane ATPase reconstituted in liposomes. FEBS Lett. 131: 351–354

    Article  CAS  Google Scholar 

  • McDonald IJ, Walker T & Johnson BF (1987) Effects of ethanol and acetate on glucose-limited chemostat cultures of Schizo-saccharomyces pombe, a fission yeast. Can. J. Microbiol. 33: 598–601

    Article  CAS  Google Scholar 

  • Meikle AJ, Reed RH & Gadd GM (1988) Osmotic adjustment and the accumulation of organic solutes in whole cells and protoplasts of Saccharomyces cerevisiae. J. Gen. Microbiol 134: 3049–3060

    PubMed  CAS  Google Scholar 

  • Mishra P & Kaur S (1991) Lipids as modulators of ethanol tolerance in yeast. Appl. Microbiol. Biotechnol. 34: 697–702

    Article  CAS  Google Scholar 

  • Müller RH, Markuske KD & Babel W (1985) Formate gradients as a means for detecting the maximum carbon conversion efficiency of heterotrophic substrates: correlation between formate utilization and biomass increase. Biotechnol. Bioeng. 27: 1599–1602

    Article  PubMed  Google Scholar 

  • Müller RH & Babel W (1988) Energy and reducing equivalent potential of C2-compounds for microbial growth. Acta Biotechnol. 8: 249–258

    Article  Google Scholar 

  • Murphy MP & Brand MD (1988a) Membrane-potential-dependent changes in the stoichiometry of charge translocation by the mitochondrial electron tranpsort chain. Eur. J. Biochem. 173, 637–644

    Article  CAS  Google Scholar 

  • Murphy MP & Brand MD (1988b) The stoichiometry of charge translocation by cytochrome oxidase and the cytochrome bc1 complex of mitochondria at high membrane potential. Eur. J. Biochem. 173: 645–651

    Article  CAS  Google Scholar 

  • Neijssel OM & Tempest DW (1976) Bioenergetic aspects of aerobic growth of Klebsiella aerogenes NCTC 418 in carbon-limited and carbon-sufficient chemostat culture. Arch. Microbiol. 107: 215–221

    Article  PubMed  CAS  Google Scholar 

  • Nelson N & Taiz L (1989) The evolution of H’-ATPases. TIBS 14: 113–116

    PubMed  CAS  Google Scholar 

  • Nohl H (1986) A novel superoxide radical generator in heart mitochondria. FEBS 214: 269–273

    Article  Google Scholar 

  • Novak M. Strehaiano P, Moreno M & Goma G (1981) Alcoholic fermentation: on the inhibitory effect of ethanol. Biotechnol. Bioeng. 23: 201–211

    Article  Google Scholar 

  • Novak B & Mitchison JM (1990) Changes in the rate of oxygen consumption in synchronous cultures of the fission yeast Schizosaccharomyces pombe. J. Cell Science 96: 429–433

    PubMed  CAS  Google Scholar 

  • Ohnishi T (1973) Mechanism of electron transport and energy conservation in hte site I region of the respiratory chain. Biochim. Biophys. Acta 301: 105–128

    Article  CAS  Google Scholar 

  • Okolo B, Johnston JR & Berry DR (1987) Toxicity of ethanol, n-butanol and iso-amyl alcohol in Saccharomyces cerevisiae when supplied separately and in mixtures. Biotechnol. Lett. 9: 431–434

    Article  CAS  Google Scholar 

  • Onken U & Liefke E (1989) Effect of total and partial pressure (oxygen and carbon dioxide) on aerobic microbial processes. Adv. Biochem. Eng/Biotechnol. 40: 137–169

    Article  CAS  Google Scholar 

  • Ouhabi R, Rigoulet M & Guerin B (1989) Flux-yield dependence of oxidative phosphorylation at constant Δ μH+. FEBS Lett. 254: 199–202

    Article  CAS  Google Scholar 

  • Oura E (1972) Reactions leading to the formation of yeast cell material from glucose and ethanol. Alkon Keskuslaboratorio report 8078. Helsinki, Finland

    Google Scholar 

  • Osothsilp C & Subden RE (1986) Malate transport in Schizo-saccharomyces pombe. J. Bacteriol. 168: 1439–1443

    PubMed  CAS  Google Scholar 

  • Paca J & Gregr V (1979) Effect of p°2 on growth and physiological characteristics of C. utilis in a multistage tower fermentor. Biotechnol. Bioeng. 21: 1827–1843

    Article  CAS  Google Scholar 

  • Pampulha ME & Loureiro V (1989) Interaction of the effects of acetic acid and ethanol on inhibition of fermentation in Saccharomyces cerevisiae. Biotechnol. Lett. 11: 269

    Article  CAS  Google Scholar 

  • Pampulha ME & Loureiro-Dias MC (1990) Activity of glycolytic enzymes of Saccharomyces cerevisiae in the presence of acetic acid. Appl. Microbiol. Biotechnol. 34: 375–380

    Article  CAS  Google Scholar 

  • Parada G & Acevedo F (1983) On the relation of temperature and RNA content to the specific growth rate in Saccharomyces cerevisiae. Biotechnol. Bioeng. 25: 2785–2788

    Article  PubMed  CAS  Google Scholar 

  • Parulekar SJ, Semones GB, Rolf MJ, Lievense JC & Lim HC (1986) Induction and elimination of oscillations in continuous cultures of Saccharomyces cerevisiae. Biotech. Bioeng. 28: 700–710

    Article  CAS  Google Scholar 

  • Pascua] C, Alonso A, Garcia I, Romay C & Kotyk A (1988) Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae. Biotechnol. Bioeng. 32: 374–378

    Article  Google Scholar 

  • Payne WJ (1970) Energy yields and growth of heterotrophs. Annu. Rev. Microbiol. 42: 17–52

    Article  Google Scholar 

  • Peinado JM, Cameira-dos-Santos PJ & Loureiro-Dias MC (1989) Regulation of glucose transport in Candida wills. J. Gen. Microbiol. 135: 195–201

    PubMed  CAS  Google Scholar 

  • Perlin DS, San Francisco MJD, Slayman CW & Rosen BP (1986) H’/ATP stoichiometry of proton pumps from Neurospora crassa and Escherichia coli. Arch. Biochem. Biophys. 248: 53–61

    Article  PubMed  CAS  Google Scholar 

  • Petrov VV & Okarokov LA (1990) Increase of the anion and proton permeability of S. carlbergensis plasmalemma by n-alcohols as a possible cause of its de-energetization. Yeast 6: 311–318

    Article  PubMed  CAS  Google Scholar 

  • Pinto I, Cardoso H, Leao C & van Uden N (1989) High enthalpy and low enthalpy death in Saccharornyces cerevisiae induced by acetic acid. Biotechnol. Bioeng. 33: 1350–1352

    Article  PubMed  CAS  Google Scholar 

  • Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proceedings of the Royal Society of London 163B: 224–231

    Article  Google Scholar 

  • Pons M-N, Rajab A & Engasser J-M (1986) Influence of acetate on growth kinetics and production control of Saccharomyces cerevisiae on glucose and ethanol. Appl. Microbiol. Biotechnol. 24: 193–198

    Article  CAS  Google Scholar 

  • Postma E, Scheffers WA & van Dijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeast Candida utilis CBS 621: a continuous culture study. J. Gen. Microbiol. 134: 1109–1116

    CAS  Google Scholar 

  • Postma E, Scheffers WA & van Dijken JP (1989) Kinetics of growth and glucose transport in glucose-limited chemostat cultures of Saccharomyces cerevisiae. Yeast 5: 159–165

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Chudek JA, Foster R & Gould CM (1987) Osmotic significance of glycerol accumulation in exponential growing yeasts. Appl. Env. Microbiol. 53: 2119–2123

    CAS  Google Scholar 

  • Rods JA (1981) Application of macroscopic principles to microbial metabolism. Biotechnol. Bioeng. 22: 2457–2514

    Google Scholar 

  • Romano AH (1982) Facilitated diffusion of 6-deoxy-D-glucose in bakers’ yeast: evidence against phosphorylation-associated transport of glucose. J. Bacteriol. 152: 1295–1297

    PubMed  CAS  Google Scholar 

  • Rods JA (1986) Sugar transport systems of baker’s yeast and filamen-tous fungi. In: Morgan MM (Ed) Carbohydrate Metabolism in cultured cells (pp 225–244). Plenum Publishing Corp

    Google Scholar 

  • Rosa MF, Sá-Correia I & Novais J (1988) Improvement in ethanol tolerance of Kluyveromyces fragilis in jerusalem artichoke juice. Biotech. Bioeng. 31: 705–710

    Article  CAS  Google Scholar 

  • Rosa MF & Sá-Correia I (1991) In vivo activation by ethanol of plasma membrane ATPase of Saccharomyces cerevisiae. Appl. Env. Microbiol. 57: 830–835

    CAS  Google Scholar 

  • Rouwenhorst RJ, Visscr LE, van der Baan AA, Scheffers WA & van Dijken JP (1988) Production, distribution and kinetic properties of Kluyvermyces marxianus CBS 6556. Appl. Env. Microbiol. 54: 1131–1137

    CAS  Google Scholar 

  • Rouwenhorst RJ, van der Baan AA, Scheffers WA & van Dijken JP (1991) Production and localization of 11-fructosidase in asynchronous and synchronous chemostat cultures of yeasts. Appl. Env. Microbiol. 57: 557–562

    CAS  Google Scholar 

  • Rutgers M, Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumonae. J. Gen. Microbiol. 133: 445–451

    PubMed  CAS  Google Scholar 

  • Rydström J, Texeira da Cruz A & Ernster L (1970) Factors governing the kinetics and steady state of the mitochondrial nicotinamide nucelotide transhydrogenase system. Eur. J. Biochem. 17: 56–62

    Article  PubMed  Google Scholar 

  • Sá-Correia I & van Uden N (1983) Temperature profiles of ethanol tolerance: effects of ethanol on the minimum and maximum temperatures for growth of the yeast Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotechnol. Bioeng. 25: 1665–1667

    Article  PubMed  Google Scholar 

  • Sá-Correia I (1986) Synergistic effect of ethanol, octanoic and decanoic acid on the kinetics and activation parameters of thermal death in Saccharomyces bayanus. Biotechnol. Bioeng. 28: 761–763

    Article  PubMed  Google Scholar 

  • Salgueiro SP, Sá-Correia I & Novais M (1988) Ethanol-induced leakage in Saccharomyces cerevisiae: kinetics and relationship to yeast ethanol tolerance and alcohol fermentation productivity. Appl. Environ. Microbiol. 54: 903–909

    PubMed  CAS  Google Scholar 

  • Salmon JM (1987) L-Malic acid permeation in resting cells of anaerobically grown Saccharomyces cerevisiae. Biochim. Biophys. Acta 901: 30–34

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1977) Energy requirements for maltose transport in yeast. Eur. J. Biochem. 80: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Serrano R (1988) Structure and function of proton translocating ATPase in plasma membranes of plants and fungi. Biochem. Biophys. Acta 947: 1–28

    Article  PubMed  CAS  Google Scholar 

  • Shul’govskaya EM, Pozmogova & Rabotnova (1988) Growth of a culture of Candida utilis in the chemostat on a balanced medium. Microbiology 56: 496–499

    Google Scholar 

  • Stanier RY, Ingraham JL, Wheelis ML & Painter PR (1987) Effect of the environment on microbial growth. In: General Microbiology (pp 207). Macmillan Education Ltd., London

    Google Scholar 

  • Steinbüchel A, Frund C, Jendrossek D & Schlegel H (1987) Isolation of mutants of Alcaligenes eutrophus unable to de-repress the fermentative alcohol dehydrogenase. Arch. Microbiol. 148: 178–186

    Article  Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. A. v. Leeuwenhoek 39: 545–565

    Article  CAS  Google Scholar 

  • Stouthamer AH & Bettenhaussen CW (1973) Utilization of energy for growth and maintenance in continuous and batch culture of microorganisms. Biochim. Biophys. Acta 301: 5370

    Google Scholar 

  • Stouthamer AH & van Verseveld HW (1987) Microbial energetics should be considered in manipulating metabolism for biotechnological purposes. Trends in Biotechnol. 40–46

    Google Scholar 

  • Taylor GT & Kirsop BH (1977) The origin of medium chain length fatty acids present in beer. J. Inst. Brew. 83: 241–243

    CAS  Google Scholar 

  • Tempest DW & Neijssel OM (1984) The status of YATp and maintenance energy as biologically interpretable phenomena. Annual Rev. Microbiol. 38: 459–486

    Article  CAS  Google Scholar 

  • Vallejo CG & Serrano R (1989) Physiology of mutants with reduced expression of plasma membrane H’-ATPase. Yeast 5: 307–319

    Article  PubMed  CAS  Google Scholar 

  • Van Dijken JP & Harder W (1975) Growth yields of microorganisms on methanol and methane. A theoretical study. Biotechnol. Bioeng. 17: 15–30

    Article  Google Scholar 

  • Van Dijken JP, Otto R & Harder W (1976) Growth of Hansenula polymorpha in a methanol-limited chemostat. Arch. Microbiol. 111: 137–144

    Article  PubMed  Google Scholar 

  • Van Dijken JP & Scheffers WA (1986) Redox balances in the metabolism of sugars by yeasts, FEMS Microbiol. Rev. 32: 199–224

    Google Scholar 

  • Van Uden N & Madeiro-Lopes (1976) Yield and maintenance relation of yeast growth in the chemostat at superoptimal temperatures. Biotechnol. Bioeng. 18: 791–804

    Article  PubMed  Google Scholar 

  • Van Uden N (1984) Temperature profiles of yeasts. Adv. Microbial Physiol. 25: 195–251

    Article  Google Scholar 

  • Van Uden N (1989) Effects of alcohols on membrane transport in yeasts. In: Alcohol Toxicity in Yeasts and Bacteria (pp 135–146). CRC Press Inc, Boca Raton

    Google Scholar 

  • Van Urk H, Postma E, Scheffers WA & van Dijken JP (1989) Glucose transport in Crabtree-positive and Crabtree-negative yeasts. J. Gen. Microbiol. 135: 2399–2406

    PubMed  Google Scholar 

  • Van Urk H, Voll WSL, Scheffers WA & van Dijken JP (1990) A transition state analysis of metabolic fluxes in Crabtree-positive and Crabtree-negative yeasts. Appl. Env. Microbiol. 56: 281–287

    Google Scholar 

  • Van Zyl PJ, Kilian SG & Prior BA (1990) The role of an active transport mechanism in glycerol accumulation during osmoregulation by Zygosaccharomyces rouxü. Appl. Microbiol. Biotechnol. 34: 231–235

    Article  Google Scholar 

  • Veenhuis M, van Dijken JP & Harder W (1983) The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv. Microb. Physiol. 24: 1–82

    Article  PubMed  CAS  Google Scholar 

  • Veenhuis M, Mateblowski M, Kunau WH & Harder W (1987) Proliferation of microbodies in Saccharomyces cerevisiae. Yeast 3: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Verduyn C, Giuseppin MLF, Scheffers WA & van Dijken JP (1988a) Hydrogen peroxide metabolism in yeasts. Appl. Env. Microbiol. 54: 2086–2090

    CAS  Google Scholar 

  • Verduyn C, Breedveld GJ, Scheffers WA & van Dijken JP (1986). Purification and properties of dihydroxyacetone re-ductase and 2,3-butanediol dehydrogenase from Candida utilis CBS 621. Yeast 4: 127–133

    Article  Google Scholar 

  • Verduyn C, Breedveld GJ, Scheffers WA & van Dijken JP (1988c). Metabolism of 2,3-butanediol in yeasts. Yeast 4: 135–142

    Article  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA & van Dijken JP (1990a) Energetics of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 405–412

    Article  CAS  Google Scholar 

  • Verduyn C, Postma E, Scheffers WA & van Dijken JP (1990b) Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures. J. Gen. Microbiol. 136: 395–403

    Article  CAS  Google Scholar 

  • Verduyn C, Stouthamer AH, Scheffers WA & van Dijken JP (1991a) A theoretical evaluation of growth yields of yeasts. A. v. Leeuwenhoek 59: 49–63

    Article  CAS  Google Scholar 

  • Verduyn C, van Wijngaarden CJ, Scheffers WA & van Dijken JP (1991b) Hydrogen peroxide as an electron acceptor for mitochondria) respiration in the yeast Hansenula polymorpha. Yeast 7: 137–146

    Article  CAS  Google Scholar 

  • Verduyn C (1992) Energetic aspects of metabolic fluxes in yeasts. PhD. thesis, Delft, The Netherlands

    Google Scholar 

  • Viegas CA, Sá-Correia I & Novais JM (1985) Synergistic inhibition of the growth of Saccharomyces bayanus by ethanol and octanoic and decanoic acids. Biotechnol. Lett. 7: 611–614

    Article  CAS  Google Scholar 

  • Vicgas CA, Rosa MF, Sá-Correia I & Novais JM (1989) Inhibition of yeast growth by octanoic and decanoic acids produced during ehanolic fermentation. Appl. Env. Microbiol. 55: 21–28

    CAS  Google Scholar 

  • Viegas CA & Sá-Correia I (1991) Activation of the plasma membrane ATPase of Saccharomyces cerevisiae by octanoic acid. J. Gen. Microbiol. 137: 645–651

    Article  PubMed  CAS  Google Scholar 

  • Von Jagow G & Klingenberg M (1970) Pathways of hydrogen in mitochondria of Saccharomyces caribergensis. Eur. J. Biochem. 12: 583–592

    Article  Google Scholar 

  • Von Stockar U & Marison IW (1989) The use of calorimetry in biotechnology. Adv. Biochem. Eng./Biotechnol. 40: 93–136

    Article  Google Scholar 

  • Vreeland RH (1987) Mechanisms of halotolerance in microorganisms. CRC Critical Reviews in Microbiology 14: 311–356

    Article  PubMed  CAS  Google Scholar 

  • Walkercaprioglio HM, Casey WM & Parks LW (1990) Saccharomyces cerevisiae membrane sterol modifications in response to growth in the presence of ethanol. Appl. Env. Microbiol. 56: 2853–2857

    CAS  Google Scholar 

  • Wallace RJ & Holms WH (1986) Maintenance coefficient and rates of turnover of cell material in Escherichia coli ML308 at different growth temperatures. FEMS Microbiol. Lett. 37: 317–320

    Article  CAS  Google Scholar 

  • Warth AD (1988) Effect of benzoic acid on growth yield of yeasts differing in their resistance to preservatives. Appl. Env. Microbiol. 54: 2091–2095

    CAS  Google Scholar 

  • Warth AD (1989) Transport of benzoic and propanoic acids by Zygosaccharomyces bailü. J. Gen. Microbiol. 135: 1383–1390

    CAS  Google Scholar 

  • Watson TG (1970) Effects of sodium chloride on steady-state growth and metabolism of Saccharomyces cerevisiae. J. Gen. Microbiol. 64: 91–99

    Google Scholar 

  • Whitworth DA & Ratledge C (1977) Phosphoketolase in Rhodotorula glutinis and other yeasts. J. Gen. Microbiol. 102: 397–401

    Article  CAS  Google Scholar 

  • Winter JF, Loret MO & Uribelarrea JL (1989) Inhibition and growth factor deficiencies in alcoholic fermentation by Saccharomyces cerevisiae. Current Microbiol. 18: 247–252

    Article  CAS  Google Scholar 

  • Zwart KB, Overmars EH & Harder W (1983) The role of peroxisomes in the metabolism of D-alanine in the yeast Candida utilis. FEMS Microbiol. Lett. 19: 225–231

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verduyn, C. (1992). Physiology of yeasts in relation to biomass yields. In: Stouthamer, A.H. (eds) Quantitative Aspects of Growth and Metabolism of Microorganisms. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2446-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2446-1_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5079-1

  • Online ISBN: 978-94-011-2446-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics