Skip to main content

Lipase Catalyzed Organic Synthesis

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 381))

Abstract

The use of lipases as catalysts in organic synthesis was exemplified by the regiospecific preparation of 6-O-acyl ethyl glucosides using a lipase derived from Candida antarctica. Optimal reaction conditions were successfully predicted using an artificial neural network as computing tool. The fatty acyl glucosides were found to be efficient nonionic surface active materials usable in a wide range of applications. A novel lipase catalyzed synthesis of peroxycarboxylic acids and concomitant lipase mediated oxidation was investigated. Using this method, epoxides were generally obtained in high yields from the corresponding alkenes. Finally, the recent determination of the X-ray structure of a lipase inhibitor complex and studies of lipase inhibitor interactions provide novel insight into the mode of action and selectivity properties of lipases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Björkling, F. Godtfredsen, S.E. and Kirk, O. (1991) ‘The future impact of industrial lipases’ TIBTECH 9, 360–363.

    Article  Google Scholar 

  2. For a recent review see Fogarty and Kelly, (1990) Microbial enzymes and biotechnology, 2nd edition, chapter 7, ‘Microbial lipases’ page 255–274, Elsevier science publishers ltd., England

    Google Scholar 

  3. Klibanov, A.M. (1990) ‘Asymetrie transformations catalyzed by enzymes in organic solvents’ Acc. Chem. Res. 23, 114–120.

    Article  CAS  Google Scholar 

  4. Chen, C-S. and Sih, C.J. (1989) ‘General aspects and optimization of enantioselective biocatalysis in organic solvents: The use of lipases’ Angew. Chem. Int. Ed. Engl. 28, 695–707.

    Article  Google Scholar 

  5. Dordick, J.S. (1989) ‘Enzymatic catalysis in monophasic organic solvents’ Enzyme Microb. Technol. 11, 194–210.

    Article  CAS  Google Scholar 

  6. Tanaka, A. and Sonomoto, K. (1990) ‘Immobilized biocatalysts in organic solvents’ CHEMTECH 112–117.

    Google Scholar 

  7. Huge-Jensen, B., Andreasen, F., Christensen, T., Christensen, M., Thim, L. and Boel, E. (1989) ‘Rizomucor miehei t triglyceride lipase is processed and secreted from transformed Aspergillus oryzaey’ Lipids 24, 781–785.

    Article  CAS  Google Scholar 

  8. Christensen, T. Woeldike, H. Boel, E. Mortensen, S.B. Hjortshoej, K. Thim, L. and Hansen, M.T. (1988) ‘High level expression of recombinant genes in Aspergillus oryzaeBiotechnology 6, 1419–1422.

    Article  CAS  Google Scholar 

  9. Riva, S. and Secundo, F. (1990) ‘Selective enzymatic acylations and deacylations of carbohy drates and related compounds’ Chimicaoggi 8, 9–16.

    CAS  Google Scholar 

  10. Bauman, H., Bühler, M., Fochem, H., Hirsinger, F., Zoebelein, H. and Falbe, J. (1988) ‘Natural fats and oils-Renewable raw materials for the chemical industry’ Angew. Chem. Int. Ed. Engl. 27, 41–62.

    Article  Google Scholar 

  11. Björkling, F. Godtfredsen, S.E. and Kirk, O. (1989) ‘A highly selective enzyme-catalyzed esterification of simple glucosides’ J. Chem. Soc. Chem. Commun. 934–935.

    Google Scholar 

  12. Adelhorst, K. Björkling, F. Godtfredsen, S.E. and Kirk, O. (1990) ‘Enzyme catalyzed preparation of 6-O-acylglucopyranosides’ Synthesis 112–115.

    Google Scholar 

  13. Heidt-Hansen, H.P. Ishi, M. Patkar, A.S. Hansen T.T. and Eigtved, P. (1989) ‘A new immobilized positional non-specific lipase for fat modification and ester synthesis’ Biocatalysis in Agricultural Biotechnology, ACS Symposium series 389, chapter 11, 158, Washington DC, 1989.

    Google Scholar 

  14. Kirk, O. Barfoed, M. and Björkling, F. (1990) ‘Application of a neural network in the optimization of an enzymatic synthesis’ Tetrahedron Computer Methodology 3, 239–243.

    Article  CAS  Google Scholar 

  15. Box, G.E.P. and Hunter, J.S. (1978) ‘Statistics for experimenters’ Wiley, New York.

    Google Scholar 

  16. Carlson, R, Hanson, L. and Lundstedt, T. (1986) ‘Optimization in organic synthesis’ Acta Chem. Scand. B40, 444–452.

    Article  CAS  Google Scholar 

  17. Kirk, O. Björkling, F. Godtfredsen, S.E. and Ostenfeld Larsen, T. (1992) ‘Fatty acid specificity in lipase-catalyzed synthesis of glucoside esters’ Biocatalysis, In press.

    Google Scholar 

  18. Björkling, F. Godtfredsen, S.E. and Kirk, O. (1990) ‘Lipase-mediated formation of peroxycarboxylic acids used in catalytic epoxidation of alkenes’ J. Chem. Soc. Chem. Commun. 1301–1303.

    Google Scholar 

  19. German patent No 2,436817 (1974), German patent No 3,723843 (1989).

    Google Scholar 

  20. Brady, L. Brzozowaski, A. M. Derwenda, Z.S. Dodson, E. Dodson, G. Tolley, S. Turkenberg, J.P. Christansen, L. Huge-Jensen, B. Norskov, L. Thim, L. and Menge, U. (1990) ‘A serine protease triad forms the catalytic centre of a triacylglycerollipase’ Nature 343,767–770.

    Article  CAS  Google Scholar 

  21. Scharg, J.D, Wu, Y.S. and Cygler, M. (1991) ‘Ser-His-Glu triad forms the catalytic site of the lipase from Geotricum candidumNature 351,761–764.

    Article  Google Scholar 

  22. Winkler, F.K.D. Arcy, A. and Hunziker, W. (1990) ‘Structure of human pancreatic lipase’ Nature 343,771–774.

    Article  CAS  Google Scholar 

  23. Brazowaski, A.M. Derwenda, U. Derwenda, Z.S. Dodson, G.G. Lawson, D.M. Turkenberg, J.P. Björkling, F. Huge-Jensen, B. Patkar, S.A. and Thim, L. (1991) ‘A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex’ Nature 351,491–494.

    Article  Google Scholar 

  24. Moreau, H. Moulin, A. Gargouri, Y. Noel, J.P. and Verger, R. (1991) ‘Inactivation of gastric and pancreatic lipases by Diethyl p-nitrophenyl phosphate’ Biochemistry 30, 1037–1041.

    Article  CAS  Google Scholar 

  25. Sikk, P.F. Oza, A.V. and Aaviksaar, A.A. (1985) ‘A water soluble organophosphorus inhibitor for pancreatic lipase’ Soviet J. Bioorg. Chem. 5, 706–708.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björkling, F., Godtfredsen, S.E., Kirk, O., Patkar, S.A., Andresen, O. (1992). Lipase Catalyzed Organic Synthesis. In: Servi, S. (eds) Microbial Reagents in Organic Synthesis. NATO ASI Series, vol 381. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2444-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2444-7_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5078-4

  • Online ISBN: 978-94-011-2444-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics