Skip to main content

Abstract

This paper presents a numerical study of the time evolution of Marangoni convection in two V-shaped containers involved in the microgravity experiments reported in Hoefsloot et al. [7]. First the case of the triangular container with a plane gas/liquid interface is considered, next the container having the shape of a circular sector with a curved interface is dealt with. The numerical results show the same behaviour as observed experimentally: convection caused by macroscale effects in the former, and microconvection in the latter case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.A. Dijkstra and A.I. van de Vooren, Initial flow development due to Marangoni convection in a mass transfer system. Int. J. Heat Mass Transfer 28 (1985) 2315–2322.

    Article  ADS  MATH  Google Scholar 

  2. H.A. Dijkstra and J.H. Lichtenbelt, Mass transfer driven Marangoni convection under microgravity. Appl. Microgravity Technology 1 (1988) 180–187.

    ADS  Google Scholar 

  3. H.C.J. Hoefsloot and L.P.B.M. Janssen, MASER-2 report, in: Experiment reports from flight opportunities on MASER-1 and-2 supported by ESA, J.P.B. Vreebuvg (ed.). National Aerospace Laboratory NLR, Amsterdam, The Netherlands (1989).

    Google Scholar 

  4. H.C.J. Hoefsloot and L.P.B.M. Janssen, Marangoni convection vr-us transfer,:in: Microgravity experiments during parabolic flights of KC-135 aircraft, sixth ESA campaign August 1988, A. Gonfalone, V. Pletser and D. Frimout (eds), ESTEC, Noordwijk, The Netherlands (1989).

    Google Scholar 

  5. H.C.J. Hoefsloot, H.W. Hoogstraten, A. Hoven and L.P.B.M Janssen, Marangoni instability in a liquid layer bounded by two coaxial cylinder surfaces. Appl. Sci. Res. 47 (1990). 1–21.

    Article  MATH  Google Scholar 

  6. H.C.J. Hoefsloot, H.W. Hoogstraten and L.P.B.M. Janssen, Marangoni instabilty in a liquid layer confined between two concentric spherical surfaces under zero-gravity conditions. Appl. Sci. Res. 47 (1990) 357–377.

    Article  MATH  Google Scholar 

  7. H.C.J. Hoefsloot, L.P.B.M. Janssen, R.T. Sibbald and H.W. Hoogsiraten, Experimental results from Marangoni convection in V-shaped containers under nii-ji’jgravity conditionsExperimental results from Marangoni convection in V-shaped containers under microgravity conditions. Microgravity Sci. Technology 4 (1991) 55–59.

    Google Scholar 

  8. H.C.J. Hoefsloot, H.W. Hoogstraten, L.M.B.M. Janssen and J.W. Knobbe. Growth factors for Marangoni instability in a spherical liquid layer under zero-gravity conditions. Appl. Sci. Res. (to appear).

    Google Scholar 

  9. H.C.J. Hoefsloot, H.W. Hoogstraten and L.P.B.M. Janssen, Marangoni convection round a ventilated air bubble under microgravity conditions, submitted to Chem. Engineering Sci.

    Google Scholar 

  10. J.H. Lichtenbelt, Improvement of flight hardware and isothermal Marangoni convection under microgravity conditions. Adv. Space Res. 5 (1986) 97–100.

    Article  Google Scholar 

  11. J.H. Lichtenbelt, A.A.H. Drinkenburg and H.A. Dijkstra, Marangoni convection and mass transfer from the liquid to the gas phase. Naturwissenschaften 73 (1986) 356–359.

    Article  ADS  Google Scholar 

  12. A.D. Myshkis, V.G. Babskii, N.D. Kopachevskii, L.A. Slobozhanirt and A.D. Tyuptsov. Low-gravity Fluid Mechanics. Springer Verlag, Berlin/New York (1987).

    Book  Google Scholar 

  13. D.A. Nield, Surface tension and buoyancy effects in cellular convection. J. Fluid Medi. 19 (1964) 341–352.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. R. Peyret and T.D. Taylor, Computational Methods for Fluid Flow. Springer Series, in Computational Physics, Springer Verlag, Berlin/New York (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoogstraten, H.W., Hoefsloot, H.C.J., Janssen, L.P.B.M. (1992). Marangoni convection in V-shaped containers. In: Kuiken, H.K., Rienstra, S.W. (eds) Problems in Applied, Industrial and Engineering Mathematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2440-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2440-9_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5076-0

  • Online ISBN: 978-94-011-2440-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics