Skip to main content

A mathematical model of the phosphorus cycle in Lake Loosdrecht and simulation of additional measures

  • Conference paper
Restoration and Recovery of Shallow Eutrophic Lake Ecosystems in The Netherlands

Part of the book series: Developments in Hydrobiology ((DIHY,volume 74))

Abstract

The phosphorus cycle in the ecosystem of the shallow, hypertrophic Loosdrecht lakes (The Netherlands) was simulated by means of the dynamic eutrophication model PCLOOS. The model comprises three algal groups, zooplankton, fish, detritus, zoobenthos, sediment detritus and some inorganic phosphorus fractions. All organic compartments are modelled in two elements, carbon and phosphorus. Within the model system, the phosphorus cycle is considered as completely closed. Carbon and phosphorus are described independently, so that the dynamics of the P/C ratios can be modelled. The model has been partly calibrated by a method based on Bayesian statistics combined with a Range Check procedure.

Simulations were carried out for Lake Loosdrecht for the periods before and after the restoration measures in 1984, which reduced the external phosphorus loading to the lake from ca. 2 mgP m−2 d−1 to 1 mgP m−2 d−1 The model outcome was largely comparable with the measured data. Total phosphorus has slowly decreased from an average 130 μgP 1−1 to ca. 80 μgP l−1, but chlorophyll-a (ca. 150 μg l−1, summer-averaged) and seston concentrations (8–15 mgCl−1) hardly changed since the restoration measures. About two-thirds of the seston consisted of detritus, while the phytoplankton remained dominated by filamentous cyanobacteria. The P/C ratio of the seston decreased from ca. 1.0% to 0.7%, while the P/C ratios of zooplankton, zoobenthos and fish have remained constant and are much higher. The system showed a delayed response to the decreased phosphorus loading until a new equilibrium was reached in ca. five years. Major reasons for the observed resilience of the lake in responding to the load reduction are the high phosphorus assimilation efficiency of the cyanobacteria and the high internal recycling of phosphorus. A further reduction of nutrient loading, perhaps in combination with additional measures like biomanipulation, will be the most fruitful additional restoration measure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aldenberg, T. & J. S. Peters, 1990. On relating empirical water quality diagrams and plankton-dynamical models: the SAMPLE methodology applied to a drinking water storage reservoir. Arch. Hydrobiol. Beih. Ergebn. Limnol. 33: 893–911.

    Google Scholar 

  • Baard, R. & T. Burger-Wiersma, 1991. Aspecten van fosfaatgelimiteerde groei van fytoplankton uit de Loosdrechtse Plassen. WOL rapport 1991–1. Laboratorium voor Microbiologie, Universiteit van Amsterdam.

    Google Scholar 

  • Bierman, V. J. & D. M. Dolan, 1981. Modeling of phyto-plankton-nutrient dynamics in Saginaw Bay, Lake Huron. J. Great Lakes Res. 7: 409–439.

    Article  CAS  Google Scholar 

  • Boers, P. C. M., J. W. Th. Bongers, A. G. Wisselo & Th. E. Cappenberg, 1984. Loosdrecht lakes Restoration Project: Sediment phosphorus distribution and release from the sediments. Verh. int. Ver. Limnol. 22: 842–847.

    CAS  Google Scholar 

  • Boers, P. C. M. & O. Van Hese, 1988. Phosphorus release from the peaty sediments of the Loosdrecht lakes (The Netherlands). Wat. Res. 22: 355–363.

    Article  CAS  Google Scholar 

  • Boesewinkel-De Bruyn, P. J., O. F. R. Van Tongeren & B. Z. Salomé, 1988. Kwantitatief fytoplanktononderzoek in het Loosdrechtse Plassen-gebied 1985–1987 vergelijking met de jaren 1981 t/m 1984. WOL-rapport 1988–8. Limnologisch Instituut, Nieuwersluis.

    Google Scholar 

  • Boström, B., M. Jansson & C. Forsberg (1982). Phosphorus release from lake sediments. Arch. Hydrobiol. Beih. 18: 5–59.

    Google Scholar 

  • Box, M. J., 1971. A parameter estimation criterion for multiresponse models applicable when some observations are missing. Applied Statistics 20: 1–7.

    Article  Google Scholar 

  • Box, G. E. P. & G. C. Tiao, 1973. Bayesian inference in statistical analysis. Addison-Wesley Publ. Cy., Reading, Mass., USA.

    Google Scholar 

  • Breebaart, L., J. Ebert & L. Van Liere, 1989. Basisgegevens WOL 1983–1988. WOL-rapport 1989–5. Limnologisch Instituut, Nieuwersluis.

    Google Scholar 

  • Buyse, J. J., 1988. Water-en stofbalansmodellen voor de Loosdrechtse Plassen. WOL rapport 1988–7. Instituut voor Aardwetenschappen, Vrije Universiteit, Amsterdam, 87 pp.

    Google Scholar 

  • De Pinto, J. V., 1981. Aquatic sediments, literature review. J. Wat. Poll. Contr. Fed. 53: 999–1007.

    Google Scholar 

  • Di Toro, D. M., 1976. Combining chemical equilibrium and phytoplankton models - A general methodology. In: R. P. Canale (ed.), Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publ. Inc., Ann Arbor, Mich.: 233–255.

    Google Scholar 

  • Di Toro, D. M. & W. F. Matystik, 1980. Mathematical models of water quality in large lakes. Part 1: Lake Huron and Saginaw Bay. EPA 600/3-80-56, Duluth, MI, USA.

    Google Scholar 

  • Di Toro, D. M., D. J. O’Connor, R. V. Thomann & J. L. Mancini, 1975. Phytoplankton-zooplankton-nutrient interaction model for Western Lake Erie. In: B. C.] Patten (ed.), Systems analysis and simulation in ecology, vol. III. Academic Press: 423–474.

    Google Scholar 

  • Droop, M. R., 1974. The nutrient status of algal cells in continuous culture. J. mar. biol. Ass. UK 54: 825–855.

    Article  CAS  Google Scholar 

  • Engelen, G. B., B. F. M. Kal, J. J. Buyse & F. G. M. Van Pruissen, 1992. The hydrology of the Loosdrecht lakes area. Hydrobiologia 233: 21–38.

    Article  CAS  Google Scholar 

  • Gliwicz, Z. M., 1980. Filtering rates, food size selection and feeding rates in cladocerans - another aspect of interspecific competition in filter-feeding zooplankton. In: W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. Am. Soc. Limnol. Oceanogr., Spec. Symp. Vol. 3: 282–291.

    Google Scholar 

  • Gons, H. J. & M. Rijkeboer, 1990. Algal growth and loss rates in Lake Loosdrecht: first evaluation of the roles of light and wind on a basis of steady state kinetics. Hydrobiologia 191: 129–138.

    Article  Google Scholar 

  • Gons, H. J. & R. Van Keulen, 1989. De relatie tussen doorz-icht en slib in de Loosdrechtse plassen in verband met de zwemwaternorm. WOL-rapport 1989–4. Limnologisch In-stituut, Nieuwersluis, 35 pp.

    Google Scholar 

  • Gons, H. J., J. Otten & M. Rijkeboer, 1991. The significance of wind resuspension for the predominance of filamentous cyanobacteria in a shallow, eutrophic lake. Mem. Ist. ital. Idrobiol., in press.

    Google Scholar 

  • Gulati, R. D., 1990. Zooplankton structure in the Loosdrecht lakes in relation to trophic status and recent restoration measures. Hydrobiologia 191: 173–188.

    Article  CAS  Google Scholar 

  • Gulati, R. D., K. Siewertsen & G. Postema, 1982. The zooplankton: its community structure, food and feeding and role in the ecosystem of Lake Vechten, Hydrobiologia 95: 127–163.

    Article  Google Scholar 

  • Gulati, R. D., K. Siewertsen & G. Postema, 1985. Zooplankton structure and grazing activities in relation to food quality and concentrations in Dutch lakes. Arch. Hydrobiol. Beih. Ergebn. Limnol. 21: 91–102.

    Google Scholar 

  • Gulati, R. D., L. Van Liere & K. Siewertsen, 1990. The Loosdrecht lake system: Man’s role in its creation, perturbation and rehabilitation. In: O. Ravera (ed.), Terrestrial and aquatic ecosystems, perturbation and recovery, pp. 593–606. Ellis Harwood Ltd., Chichester, U.K.

    Google Scholar 

  • Gulati, R. D., K. Siewertsen & L. Van Liere, 1991. Carbon and phosphorus relationships of zooplankton and its seston food in Loosdrecht lakes. Mem. Ist. ital. Idrobiol. (in press).

    Google Scholar 

  • Healey, F. P., 1978. Physiological indicators of nutrient deficiency in algae. Mitt. int. verein. Limnol. 21: 34–41.

    CAS  Google Scholar 

  • Hofstra, J. J. & L. Van Liere, 1992. The state of the environment of Loosdrecht lakes. Hydrobiologia 233: 11–20.

    Article  CAS  Google Scholar 

  • Holling, C. S., 1965. The functional response of predators to prey density and its role in mimicry and population regulation. Mem. Entomol. Soc. Can. 45: 1–60.

    Article  Google Scholar 

  • Janse, J. H. & T. Aldenberg, 1990a. PCLOOS, a eutrophication model of the Loosdrecht lakes. WQL report no. 1990–1. Report no. 714502001, Nat. Inst. of Public Health and Env. Prot., Bilthoven, 92 pp.

    Google Scholar 

  • Janse, J. H. & T. Aldenberg, 1990b. Modelling phosphorus fluxes in the hypertrophic Loosdrecht lakes. Hydrobiol. Bull. 24: 69–89.

    Article  CAS  Google Scholar 

  • Janse, J. H. & T. Aldenberg, 1991. Modelling the eutrophication of the shallow Loosdrecht Lakes. Verh. int. Ver. Limnol. 24: 751–757.

    CAS  Google Scholar 

  • Jørgensen, S. E., 1980. Lake management. (Water development, supply and management, vol. 14). Pergamon Press, 167 pp.

    Google Scholar 

  • Keizer, P., M. N. C. P. Buysman & Th. E. Cappenberg, 1991. Sorption and release of phosphorus in a peaty sediment. Verh. int. Ver. Limnol. 24: 722–725.

    CAS  Google Scholar 

  • Keizer, P. & A. J. C. Sinke, 1992. Phosphorus in the sediment of the Loosdrecht lakes and its implications for lake restoration perspectives. Hydrobiologia 233: 39–50.

    Article  CAS  Google Scholar 

  • Kouwenhoven, P. & T. Aldenberg, 1986. A first step in modelling plankton growth in the Loosdrecht lakes. Hydrobiol. Bull. 20: 135–145.

    Article  CAS  Google Scholar 

  • Lammens, E. H. R. R., N. Boesewinkel-de Bruyn, H. Hoogveld & E. Van Donk, 1992. P-load phytoplankton, zooplankton and fish stock in Loosdrecht Lake and Tjeu-kemeer: confounding effects of predation and food availability. Hydrobiologia 233: 87–94.

    Article  Google Scholar 

  • Lijklema, L., J. H. Janse, R. M. M. Roijackers & M.-L. Meyer, 1988. Eutrofiëring in Nederland. H2O 21: 462–467.

    Google Scholar 

  • Mitchell & Gauthier Associates Inc., 1991. Advanced Continuous Simulation Language (ACSL), Reference Manual, Edition 10.0 MGA, Concord, Mass., USA.

    Google Scholar 

  • Moss, B., 1980. Ecology of fresh waters. Blackwell Sci. Publ., London, 332 pp.

    Google Scholar 

  • OECD, 1982. Eutrophication of waters; monitoring, assessment and control. OECD, Brussel.

    Google Scholar 

  • Otten, J. H., H. J. Gons & M. Rijkeboer, 1992. Dynamics of phytoplankton detritus in a shallow, eutrophic lake (Lake Loosdrecht, The Netherlands). Hydrobiologia 233: 61–68.

    Article  CAS  Google Scholar 

  • Patten, B. C. (ed.), 1975. Systems analysis and simulation in ecology, vol. III. Academic Press, New York.

    Google Scholar 

  • Reckhow, K. H. & S. C. Chapra, 1983. Engineering approaches for lake management. Vol. 1, Data analysis and empirical modelling. Butterworth Publishers.

    Google Scholar 

  • Riegman, R., 1985. Phosphate-phytoplankton interactions. Ph.D. Thesis, University of Amsterdam.

    Google Scholar 

  • Rijkeboer, M. & H. J. Gons, 1990. Light-limited algal growth in Lake Loosdrecht: steady state studies in laboratory scale enclosures. Hydrobiologia 191: 241–248.

    Article  CAS  Google Scholar 

  • Ryding, S. O. & C. Forsberg, 1977. Sediments as a nutrient source in shallow polluted lakes. In: H. Golterman (ed.), Interaction between sediments and fresh water. Dr W. Junk, The Hague: 227–235.

    Google Scholar 

  • Sas, H., 1989. -P!?. Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia-Verlag Richarz, St. Augustin, 497 pp.

    Google Scholar 

  • Scheffer, M., 1989. Alternative stable states in eutrophic shallow freshwater systems: a minimal model. Hydrobiol. Bull. 23: 73–84.

    Article  Google Scholar 

  • Sinke, A. J. C., A. A. Cornelese, P. Keizer, O. F. R. Van Tongeren & Th. E. Cappenberg, 1990. Mineralization, pore water chemistry and phosphorus release from peaty sedi ments in the eutrophic Loosdrecht lakes, The Netherlands. Freshwat. Biol. 23: 587–599.

    Article  CAS  Google Scholar 

  • Straskraba, M. & A. Gnauck, 1985. Freshwater ecosystems, modelling and simulation. (Developments in environmental modelling, 8.) Elsevier, Amsterdam/VEB Gustav Fischer Verlag, Jena, 309 pp.

    Google Scholar 

  • Van Liere, L. & J. H. Janse, 1992. Restoration and resilience to recovery of the Lake Loosdrecht ecosystem in relation to its phosphorus flow. Hydrobiologia 233: 95–104.

    Article  Google Scholar 

  • Van Liere, L., R. D. Gulati, F. G. Wortelboer & E. H. R. R. Lammens, 1990. Phosphorus dynamics following restoration measures in the Loosdrecht lakes (The Netherlands). Hydrobiologia 191: 87–95.

    Article  Google Scholar 

  • Van Liere, L., S. Parma, L. R. Mur, P. Leentvaar & G. B. Engelen, 1984. Loosdrecht lakes Restoration Project, an introduction. Verh. int. Ver. Limnol. 22: 829–834.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Louis Van Liere Ramesh D. Gulati

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Janse, J.H., Aldenberg, T., Kramer, P.R.G. (1992). A mathematical model of the phosphorus cycle in Lake Loosdrecht and simulation of additional measures. In: Van Liere, L., Gulati, R.D. (eds) Restoration and Recovery of Shallow Eutrophic Lake Ecosystems in The Netherlands. Developments in Hydrobiology, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2432-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2432-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5073-9

  • Online ISBN: 978-94-011-2432-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics