Advertisement

Inequality and Social Status in Successive Generations

Chapter
  • 90 Downloads
Part of the Advanced Studies in Theoretical and Applied Econometrics book series (ASTA, volume 25)

Abstract

This paper attempts to model transition probabilities of intergenerational occupational mobility for British and Danish data. A bivariate normal status distribution is tried but rejected. A simple bivariate Gumbel model, with only one unknown parameter that determines the social mobility process, appears to provide a satisfactory fit for both sets of data.

Keywords

Status Distribution Status Group Bivariate Normal Distribution Occupational Mobility Exchange Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, Y.M.M., S.E. Fienberg and P.W. Holland, 1975, Discrete multivariate analysis: Theory and practice (MIT Press, Cambridge, MA).Google Scholar
  2. Boudon, R., 1973, Mathematical structures of social mobility (Jossey-Bass, San Francisco, CA and Elsevier Scientific Publishing Company, Amsterdam).Google Scholar
  3. Glass, D.V. and J.R. Hall, 1954, Social mobility in Great Britain: A study of inter-generation changes in status, in: D.V. Glass, ed., Social mobility in Britain (The Free Press, Glencoe, IL) ch. VIII.Google Scholar
  4. Gumbel, E.J., 1961, Bivariate logistic distributions, Journal of the American Statistical Association 56, 335–349.CrossRefGoogle Scholar
  5. Gumbel, E.J. and C.K. Mustafi, 1967, Some analytical properties of bivariate extremal distributions, Journal of the American Statistical Association 62, 569–588.CrossRefGoogle Scholar
  6. Haberman, S.J., 1974, The analysis of frequency data (University of Chicago Press, Chicago, IL).Google Scholar
  7. Levine, J.H., 1972, A two-parameter model of interaction in father-son status mobility, Behavioral Science 17, 455–465.CrossRefGoogle Scholar
  8. Mardia, K.V., 1970, Families of bivariate distributions (Hafner Publishing Company, Darien, CT).Google Scholar
  9. NBS (National Bureau of Standards), 1959, Tables of the bivariate normal distribution function and related functions, Applied Mathematics Series, vol. 50 (U.S. Government Printing Office, Washington, DC).Google Scholar
  10. Rogoff, N., 1953, Recent trends in occupational mobility (The Free Press, Glencoe, IL).Google Scholar
  11. Svalastoga, K., 1959, Prestige, class and mobility, William Heinemann, London.Google Scholar
  12. Svalastoga, K., 1961, Gedanken zu internationalen Vergleichen sozialer Mobilität, in: D. Glass and Renée König, eds., Soziale Schichtung und soziale Mobilität, Sonderheft 5 of Kölner Zeitschrift für Soziologie und Sozialpsychologie, 284–301.Google Scholar
  13. Svalastoga, K., 1965, Social mobility: The Western European model, Acta Sociologica 9, 175–182.CrossRefGoogle Scholar
  14. Theil, H., 1972, Statistical decomposition analysis with applications in the social and administrative sciences, North-Holland, Amsterdam.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1992

Authors and Affiliations

  1. 1.University of ChicagoChicagoUSA

Personalised recommendations