Skip to main content

Part of the book series: Molecular and Cell Biology of Human Diseases Series ((Mol. Cell Biol. Hu. Dis.))

  • 109 Accesses

Abstract

Herpes . . . in the current post sexual-revolution era is certainly a familiar term yet the virus responsible is truly ancient. Indeed, herpes simplex virus has been with us for far longer than we have been Homo sapiens. Although oral cold sores were described by 100 AD (Wildy, 1973) and genital herpes was recognized as a sexually transmissible disease in the early eighteenth century (Astruc, 1736; Diday and Doyon, 1886) it was not until 1962 that two serologically distinct herpes simplex viruses were recognized; HSV-1 (primarily oral-labial) and HSV-2 (primarily genital) (Schnewiess, 1962; Nahmais and Dowdle, 1968). Detailed knowledge of HSV has emerged largely in the last 20 years, but it is accumulating at an accelerating pace in parallel with the sophistication of molecular biology.

And nature must obey necessity Shakespeare, Julius Caesar, IV, iii

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, W.A., Magruder, B. and Kilbourne, E.D. (1961) Induced reactivation of herpes simplex virus in healed rabbit corneal lesions. Proc. Soc. Exp. BioI. Med., 107, 628–32.

    CAS  Google Scholar 

  • Ashley, R., Mertz, G., Clark, H. et al. (1985) Humoral immune response to herpes simplex virus Type 2 glycoproteins in patients receiving a glycoprotein subunit vaccine. J. Virol., 56, 475–81.

    PubMed  CAS  Google Scholar 

  • Astruc, J. (1736) De Morbis Veneris Libri Sex, Paris.

    Google Scholar 

  • Baer, R., et al. (1984) DNA sequence and expression of the B95-8 Epstein-Barr Virus genome. Nature, 310, 207.

    Article  PubMed  CAS  Google Scholar 

  • Batterson, W., Furlong, D. and Roizman, B. (1983) Molecular genetics of herpes simplex virus. VII. Further characterization of a ts mutant defective in release of viral DNA and in other stages of viral reproductive cycle. J. Virol., 45, 397–407.

    PubMed  CAS  Google Scholar 

  • Batterson, W. and Roizman, B. (1983) Characterization of the Herpes Simplex virion associated factor responsible for the induction of α genes. J. Virol., 46, 371–7.

    PubMed  CAS  Google Scholar 

  • Bernstein, D.I., Lovett, M.A. and Bryson, Y.J. (1984) Serologic analysis of first episode nonprimary genital herpes simplex virus infection. Am. J. Med. 77, 1055–60.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, D.I., Bryson, Y.J. and Lovett, M.A. (1985) Antibody response to type common and type unique epitopes of herpes simplex virus polypeptides. J. Med. Virol., 15, 251–63.

    Article  PubMed  CAS  Google Scholar 

  • Braun, D.K., Roizman, B. and Pereira, L. (1984) Characterization of posttranslational products of herpes simplex virus gene 35 protein s binding to the surface of full but not empty capsids. J. Virol., 49, 142–53.

    PubMed  CAS  Google Scholar 

  • Buchman, T.G., Roizman, B., Adams, G. and Stover, H. (1978) Restriction endonuclease footprinting of herpes simplex virus DNA: a novel epidemiologic tool applied to a nosocomial outbreak. J. Inf. Dis., 138, 488–98.

    Article  CAS  Google Scholar 

  • Buchman, T.G., Roizman, B. and Nahmias, A.J. (1979) Demonstration of exogenous reinfection with herpes simplex virus type 2 by restriction endonuclease fingerprinting of viral DNA. J. Inf. Dis., 140, 295–304.

    Article  CAS  Google Scholar 

  • Campbell, M.E.M., Palfreyman, J.W. and Preston, C.M. (1984) Identification of herpes simplex virus DNA sequences which encode a tran s acting polypeptide responsible for stimulation of immediate early transcription. J. Mol. BioI., 180, 1–19.

    Article  CAS  Google Scholar 

  • Campadelli-Fiume, G., Stirpe, D., Boscaro, A. et al. (1990) Glycoprotein C dependent attachment of attachment of herpes simplex virus to susceptible cells leading to productive infection. J. Virol., 178, 213–22.

    Article  CAS  Google Scholar 

  • Challberg, M.D. (1986) A method for identifying the viral genes required for DNA replication. Proc. Natl Acad. Sci. (USA), 83, 9094–8.

    Article  CAS  Google Scholar 

  • Chou, J., Kern, E.R., Whitley, R.J. and Roizman, B. (1990) Mapping of herpes simplex virus 1 eurovirulence to γ′34.5, a gene nonessential for growth in cell culture. Science, 250, 1202–6.

    Article  Google Scholar 

  • Chou, J. and Roizman, B. (1985) The isomerization of the herpes simplex virus 1 genome: Identification of the cis-acting and recombination sites within the domain of the a sequence. Cell, 41, 803–11.

    Article  PubMed  CAS  Google Scholar 

  • Chou, J. and Roizman, B. (1990) The herpes simplex virus gene for ICP 34.5, which maps in inverted repeats, is conserved in several limited passage isolates but not in strain 17syn+. J. Virol., 64, 1014–20.

    PubMed  CAS  Google Scholar 

  • Cohen, G.S., Ponce De Leon, M., Deggelmann, H. et al. (1980) Structural analysis of the capsid proteins of herpes simplex virus types 1 and 2. J. Virol., 34, 521–31.

    PubMed  CAS  Google Scholar 

  • Crumpacker, C.S., Schnipper, L.E., Zaia, J.A. and Levine, M. (1979) Growth inhibition by acycloguanosine of herpesviruses isolated from human infections. Antimicrob. Agents Chemother., 15, 642–5.

    Article  PubMed  CAS  Google Scholar 

  • Crumpacker, C.S. Schnipper, L.L., Marlowe, S.I. et al. (1982) Resistance to antiviral drugs of herpes simplex from a patient treated with Acyclovir. New. Eng. J. Med., 306, 343–6.

    Article  PubMed  CAS  Google Scholar 

  • Crumpacker, C.S. (1989) Molecular targets of antiviral therapy. New. Eng. J. Med., 321, 163–72.

    Article  PubMed  CAS  Google Scholar 

  • Crute, J.J., Tsurumi, T., Zhu, L. et al. (1989) Herpes simplex virus 1 helicaseprimase: A complex of herpes-encoded gene products. Proc. Natl Acad. Sci. USA, 86, 2186–9.

    Article  PubMed  CAS  Google Scholar 

  • Davison A.J. and Wilkie, N.M. (1981) Nucleotide sequences of the joint between the land S segments of herpes simplex virus types 1 and 2. J. Gen. Virol., 55, 315–31.

    Article  PubMed  CAS  Google Scholar 

  • Davison, A.J. and Scott, J.E. (1986) The complete DNA sequence of Varicella Zoster Virus genome. J. Gen. Virol., 67, 1759–816.

    Article  PubMed  CAS  Google Scholar 

  • Deiss, L.P., Chou, J. and Frenkel, N. (1986) Functional domains within the a sequence involved in the cleavage-packaging of herpes simplex virus DNA. J. Virol., 59, 605–18.

    PubMed  CAS  Google Scholar 

  • Deiss, L.P. and Frenkel, N. (1986) Herpes simplex virus amplicon: cleavage of concatameric DNA is linked to packaging and involves amplification of the terminally reiterated a sequence. J. Virol., 57, 933–41.

    PubMed  CAS  Google Scholar 

  • Deluca, N.A. and Schaffer, P.A. (1988) Physical and functional domains of the herpes simplex virus transcriptional regulatory protein ICP4. J. Virol., 62, 732–43.

    PubMed  CAS  Google Scholar 

  • Deluca, N.A., McCathy, A.M. and Schaffer, P.A. (1985) Isolation and characterization of deletion mutants of herpes simplex type 1 in the gene encoding immediate-early regulatory protein ICP4. J. Virol., 56, 558–70.

    PubMed  CAS  Google Scholar 

  • Derse, D., Cheng, Y.-C., Furman, P.A. et al (1981) Inhibition of purified human and herpes simplex virus-induced DNA polymerases by 9-(2-hydroxymethyl) guanine triphosphate. J. Bioi. Chem., 256, 11447–51.

    CAS  Google Scholar 

  • Diday, P. and Doyon, A. (1886) Les Herpes Genitaux, Masson et Cie, Paris.

    Google Scholar 

  • Ejercito, P.M., Kieff, E.D. and Roizman, B. (1968) Characterization of herpes simplex strains differing in their effects on social behavior of infected cells. J. Gen. Virol., 2, 357–64.

    Article  PubMed  CAS  Google Scholar 

  • Elias, P. and Lehman, I.R. (1988) Interaction of origin binding protein with an origin of replication of herpes simplex virus 1. Proc. Natl Acad. Sci. USA, 85, 2959–63.

    Article  PubMed  CAS  Google Scholar 

  • Everett, R.D. (1984) Trans-activation of transcription by herpes virus products: requirements for two HSV-1 immediate early polypeptides for maximum activity. EMBO J.,3, 3135–41.

    PubMed  CAS  Google Scholar 

  • Field, H., McMillan, A. and Darby, G. (1981) The sensitivity of acyclovir-resistant mutants of herpes simplex virus to other antiviral drugs. J. Inf. Dis., 143, 281–5.

    Article  CAS  Google Scholar 

  • Frenkel, N., Schirmer, E.C., Wyatt, L.S. et al. (1990) Isolation of a new herpesvirus from human CD4 T cells. Proc. Natl. Acad. Sci. USA, 87, 748–52.

    Article  PubMed  CAS  Google Scholar 

  • Fuller, A.O., Santos, R.E. and Spear, P.G. (1989) Neutralizing antibodies specific for glycoprotein H of herpes simplex virus permit viral attachment but prevent virion-cell fusion required for penetration. J. Virol., 63, 3435–43.

    PubMed  CAS  Google Scholar 

  • Furlong, D., Swit, H. and Roizman, B. (1972) Arrangements of herpesvirus deoxyribonucleic acid in the core. J. Virol., 10, 1071–4.

    PubMed  CAS  Google Scholar 

  • Furman, P.A., St Clair, M.H. and Spector, T. (1984) Acyclovir triphosphate is a suicide inhibitor of the herpes simplex virus DNA polymerase. J. Biol. Chem., 259, 9575–9.

    PubMed  CAS  Google Scholar 

  • Fyfe, J.A., Keller, P.M., Furman, P.A. et al. (1978) Thymidine kinase from herpes simplex virus phosphorylates the new antiviral compound, 9-(2hydroxymethyl) guanine. J. Biol. Chem., 253, 8721–87.

    PubMed  CAS  Google Scholar 

  • Gelman, I.H. and Silverstein, S. (1988) Herpes simplex virus immediate early promoters are responsive to virus and cell trans-acting factors. J. Virol., 61, 2286–96.

    Google Scholar 

  • Gershon, A.A., Steinberg S.P. et al. (1989) Persistence of immunity to varicella in children with leukemia immunized with live attenuated varicella vaccine. New Engl. J.Med., 320, 892–6.

    Article  PubMed  CAS  Google Scholar 

  • Gibson, W. and Roizman, B. (1972) Proteins specified by herpes simplex virus VIII; Characterization and composition of multiple capsid forms of subtypes 1 and 2. J. Virol., 10, 1044–52.

    PubMed  CAS  Google Scholar 

  • Gibson, W. and Roizman, B. (1974) Proteins specified by herpes simplex virus X; Staining and radio labeling properties of β-capsid and virion proteins in polyacrylamide gels. J. Virol., 13, 155–65.

    PubMed  CAS  Google Scholar 

  • Goldstein. L.C., Corey, L., McDougall, J.K. et al. (1983) Monoclonal antibodies to herpes simplex viruses: use in antigenic typing and rapid diagnosis. J. Inf. Dis., 147, 829–37.

    Article  CAS  Google Scholar 

  • Harbour, D.A., Hill, T.J. and Blyth, W.A. (1983) Recurrent herpes simplex in the mouse: inflammation of the skin and reactivation of virus in the ganglia following peripheral stimuli. J. Gen. Virol., 64, 1491–8.

    Article  PubMed  Google Scholar 

  • Hayward. G.S. Jacob, R.J., Wadsworth, S.C. and Roizman, B. (1975) Anatomy of herpes simplex virus DNA: Evidence for populations of molecules that differ in the relative orientations of their long and short segments. Proc. Natl Acad. Sci., 72, 4243–7.

    Article  PubMed  CAS  Google Scholar 

  • Heine, J.W., Honess, R.W., Cassim, E. and Roizman B. (1974) Proteins specified by Herpes Simplex virus; XII the virion polypeptides of type 1 strains. J. Virol., 14, 640–51.

    PubMed  CAS  Google Scholar 

  • Highlander, S.H., Sutherland, S.L., Gage, P.J., et al. (1987) Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J. Virol., 61, 3356.

    PubMed  CAS  Google Scholar 

  • Highlander, S.H. Cai, W., Person, S. et al. (1988) Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. J. Virol., 62, 1881.

    PubMed  CAS  Google Scholar 

  • Hill, J.M., Sedarati, F., Javier, R.T. et al (1990) Herpes simplex virus latent phase transcription facilitates in-vivo reactivation. Virology, 174, 117–25.

    Article  PubMed  CAS  Google Scholar 

  • Honess, R.W. and Roizman, B. (1974) Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of the groups of viral proteins. J. Virol., 14, 8–19.

    PubMed  CAS  Google Scholar 

  • Honess, R.W. and Roizman, B. (1975) Regulation of herpesvirus macromolecular synthesis: sequential transition of polypeptide synthesis requires functional viral polypeptides. Proc. Natl Acad. Sci. USA, 72, 1276–80.

    Article  PubMed  CAS  Google Scholar 

  • Izumi, K.M. and Stevens, J.G. (1990) Molecular and biological characterization of a herpes simplex virus type 1 (HSV-1) neuroinvasiveness gene. J. Exp. Med., 172, 487–96.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, R.J., Morse, L.S. and Roizman, B. (1979) Anatomy of herpes simplex DNA XIII. Accumulation of head to tail concatamers in nuclei of infected cells and their role in the generation of the four isomeric arrangements of viral DNA. J. Virol., 29, 448–57.

    PubMed  CAS  Google Scholar 

  • Javier, R.T. and Stevens, J.G. (1988) A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the infected state. Virology, 166, 254.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R.E., Nahmias, A.J., Magder, L.S. et al. (1989) A seroepidemiologic survey of the prevalence of herpes simplex virus Type 2 infection in the United States. New Engl. J. Med., 321, 7–12.

    Article  PubMed  CAS  Google Scholar 

  • Katz, J.P., Bodin, E.T. and Coen, D.M. (1990) Quantitative polymerase chain reaction analysis of herpes simplex virus DNA in ganglia of mice infected with replication-incompetent mutants. J. Virol., 64, 4288–95.

    PubMed  CAS  Google Scholar 

  • Kern, E.R., Glasgow, L.A., Reno, J. and Balzi, A. (1978) Treatment of experimental herpesvirus infections with phosphonoformate and some comparisons with phosphonoacetate. Antimicrob. Agents Chemotber., 14, 817–23.

    Article  CAS  Google Scholar 

  • Kieff, E.D., Bachenheimer, S.L. and Roizman, B. (1971) Size, composition, and structure of the DNA of subtypes 1 and 2 of herpes simplex virus.J. Virol., 8, 125–9.

    PubMed  CAS  Google Scholar 

  • Kieff, E.D., Hoyer, B., Bachenheimer, S. and Roizman, B. (1972) Relatedness of type 1 and type 2 herpes simplex viruses. J. Virol., 9, 738–45.

    PubMed  CAS  Google Scholar 

  • Kristie, T.M. and Roizman, B. (1984) Separation of sequences defining basal expression from those conferring α gene recognition within regulatory domains of herpes simplex virus 1 α genes. Proc. Natl Acad. Sci. USA, 81, 4065–9.

    Article  PubMed  CAS  Google Scholar 

  • Kristie, T.M. and Roizman, B. (1986) α4 the major regulatory protein of herpes simplex virus type 1 is stably and specifically associated with promoter regulatory domains of α genes and of selected other viral genes. Proc. Natl Acad. Sci. USA, 83, 3218–22.

    Article  PubMed  CAS  Google Scholar 

  • Kristie, T.M. and Roizman, B. (1987) Host cell proteins bind to the cis acting site required for virion mediated induction of herpes simplex virus 1 α genes. Proc. Natl Acad. Sci. USA, 84, 71–5.

    Article  PubMed  CAS  Google Scholar 

  • Kristie, T.M. and Roizman, B. (1988) Differentiation of DNA contact points of the host proteins binding at the cis-site for virion mediated induction of α genes of herpes simplex virus 1. J. Virol., 62, 1145–57.

    PubMed  CAS  Google Scholar 

  • Kristie, T.M., LeBowitz, J.H. and Sharp, P.A. (1989) The Octamer binding proteins form multi-protein-DNA complexes with the HSV αTIF regulatory protein. EMBO J., 8, 4229–38.

    PubMed  CAS  Google Scholar 

  • Kristensson, K., Lycke, E., Raytta, M. et al. (1986) Neuritic transport of herpes simplex virus in rat sensory neurons in vitro. Effects of substances interacting with microtubular function and axonal flow [Nocodazone, Taxol, and erythro-9-3-(2-hydoxynonyl)adenine]. J. Gen. Virol., 67, 2023–8.

    Article  PubMed  CAS  Google Scholar 

  • Kwon, B.S. Gangorosae, L.P., Green, K. and Hill, J. A. (1982) Kinetics of ocular herpes simplex virus shedding induced by epinephrine iontophoresis. Invest. Opthalmol. Vis. Sci., 22, 818–21.

    CAS  Google Scholar 

  • Kwong, A. and Frenkel, N. (1989) The herpes simplex virus virion host shutoff function. J. Virol., 63, 4834–9.

    PubMed  CAS  Google Scholar 

  • Lawrence, G.L., Chee, M., Craxton, M.A. et al. (1990) Human Herpesvirus 6 is closely related to human cytomegalovirus. J. Virol., 64, 287–99.

    PubMed  CAS  Google Scholar 

  • Lee, F.K., Coleman, M., Pereira, L. et al. (1985) Detection of herpes simplex virus type specific antibody with glycoprotein G. J. Clin. Microbiol., 22, 641–4.

    PubMed  CAS  Google Scholar 

  • Linnemann, C.C., Jr, Buchman, T.G., Light, I.J., Ballard, J.L. and Roizman, B. (1978) Transmission of herpes-simplex virus type 1 in a nursery for the newborn: Identification of viral isolates by DNA fingerprinting. Lancet i, 964–6.

    Article  Google Scholar 

  • Locker, H. and Frenkel. F. (1979) Bam I, Kpn I and Sal I restriction enzyme maps of the DNAs of herpes simplex virus strains Justin and F: Occurrence of heterogeneities in defined regions of the viral DNA. J. Virol., 32, 424–41.

    Google Scholar 

  • Locker, H., Frenkel, H. and Halliburton, I. (1982) Structure and expression of class II defective herpes simplex virus genomes encoding infected cell polypeptide number 8. J. Virol., 43 574–93.

    PubMed  CAS  Google Scholar 

  • Longnecker, R. and Roizman, B. (1986) Gerneration of an inverting herpes simplex virus mutant lacking the L-S junction a sequences, an origin of DNA synthesis incuding those specifying glycoprotein E, and α47. J. Virol., 58, 583–91.

    PubMed  CAS  Google Scholar 

  • Lycke, E., Kristensson, K., Svennerholm, B. et al. (1984) Uptake and transport of herpes simplex virus in neurites of rat dorsal root ganglia cells in culture. J. Gen. Virol., 65, 55–64.

    Article  PubMed  Google Scholar 

  • Mackem, S. and Roizman, B. (1982) Structural features of the α genes 4, 0, and 27 promoter-regulatory sequences which confer a regulation on chimeric thymidine kinase genes. J. Virol., 44, 939–49.

    PubMed  CAS  Google Scholar 

  • Mavromara-Nazos, P. and Roizman, B. (1987) Activation of Herpes simplex virus 2 genes by viral DNA replication. Virology, 161, 593–8.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, A.M., McMahan, L. and Schaffer, P.A. (1989) Herpes simplex virus type 1 ICP27 deletion mutants exhibit altered patterns of transcription and are DNA deficient. J. Virol., 63, 18–27.

    PubMed  CAS  Google Scholar 

  • McGeoch, D.J., Moss, H.W.M., McNab, D. and Frame, M.C. (1987) DNA sequence and genetic content of HindIII L region of the short unique component of the Herpes simplex virus type 2 genome: Identification of the gene encoding glycoprotein G and evolutionary comparisons. J. Gen. Virol., 68, 19–38.

    Article  PubMed  CAS  Google Scholar 

  • McGeoch, D., Dalrymple, M.A., Davison, A.J. et al. (1988) The complete sequence of the long unique region in the genome of herpes simplex virus type 1. J. Gen. Virol., 69, 1531–74.

    CAS  Google Scholar 

  • McKnight, J.L.C., Kristie, T.M. and Roizman, B. (1987) Binding of the virion protein mediating α gene induction in herpes simplex virus 1 infected cells to its cis site requires cellular proteins. Proc. Natl Acad. Sci. USA, 84, 7061.

    Article  PubMed  CAS  Google Scholar 

  • Marsden, H.S., Stow, N.D., Preston, V.G. et al. (1978) Physical mapping of herpes simplex virus induced polypeptides. J. Virol., 28, 624–42.

    PubMed  CAS  Google Scholar 

  • Meignier, B., Longnecker, R., Mavromara-Nazos, P. et al. (1987a) Virulence and establishment of latency by genetically engineered mutants of herpes simplex virus 1. Virology, 162, 251–4.

    Article  Google Scholar 

  • Meignier, B.,Jourdier, T.M., Norrild, B.et al. (1987b) Immunization of experimental animals with reconstituted glycoprotein mixtures of herpes simplex virus 1 and 2: protection against challenge with virulent virus. J. Inf. Dis., 155, 921–30.

    Article  CAS  Google Scholar 

  • Meignier, B., Longnecker, R. and Roizman, B. (1988) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020: construction and evaluation in rodents. J. Inf. Dis., 158, 602–14.

    Article  CAS  Google Scholar 

  • Meignier, B., Martin, B., Whitley, R. and Roizman, B. (1990) In vivo behavior of genetically engineered herpes simplex viruses R7017 and R7020. II. Studies in immunocompetent and immunosuppressed owl monkeys (Aotus Trivirgatus). J. Inf. Dis., 162,313–21.

    Article  CAS  Google Scholar 

  • Mellerick, D.M. and Faser, N.W. (1987) Physical state of the latent herpes simplex genome in a mouse model system: evidence suggesting an episomal state. Virology, 158, 265.

    Article  PubMed  CAS  Google Scholar 

  • Mertz, G.J., Peterman, G., Ashley, R. et al. (1984) Herpes simplex virus type-2 glycoprotein-subunit vaccine: tolerance and humoral and cellular responses in humans. J. Inf. Dis., 150, 242–9.

    Article  CAS  Google Scholar 

  • Micheal, N., Spector, D., Mavromana-Nazos, P. et al. (1988) The DNA binding properties of the major regulatory protein α4 of herpes simplex virus. Science, 239, 1531–4.

    Article  Google Scholar 

  • Mocarski, E., S. and Roizman, B. (1981) Site specific inversion sequence of herpes simplex virus genome: domain and structural features. Proc. Natl Acad. Sci. USA, 78, 7047–51.

    Article  PubMed  CAS  Google Scholar 

  • Mocarski, E.S. and Roizman, B. (1982a) The structure and role of the herpes simplex virus DNA termini in inversion circularization and generation of virion DNA. Cell, 31, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Mocarski, E.S. and Roizman, B. (1982b) Herpesvirus dependent amplification and inversion of a cell associated viral thymidine kinase gene flanked by viral a sequences and linked to an origin of viral DNA replication. Proc. Natl Acad. Sci. USA, 79, 5626–30.

    Article  PubMed  CAS  Google Scholar 

  • Morse, L.S., Buchman, T.G., Roizman, B. and Schaffer, P.A. (1977) Anatomy of herpes simplex virus DNA IX; Apparent exclusion of some parental DNA arrangements in the generation of intertypic (HSV 1 X HSV 2) recombinants. J. Virol., 24, 231–48.

    PubMed  CAS  Google Scholar 

  • Morse, L.S., Pereira, L., Roizman, B. and Schaffer, P.A. (1978) Anatomy of HSV DNA; XI Mapping of viral genes by analysis of polypeptides and functions specified by HSV 1 X HSV 2 recombinants. J. Virol., 26, 389.

    PubMed  CAS  Google Scholar 

  • Nahmais, A.J. and Dowdle, W.R. (1968) Antigenic and biologic differences in herpesvirus himinis. Prog. Med. Virol., 10, 110–59.

    Google Scholar 

  • Nahmais, A.J., Keyserling, H.L. and Kerrick, C.M. (1983) Herpes simplex, in Infectious Diseases of the Fetus and the Newborn Infant (eds J.S. Remington and J.O. Klein), Saunders, Phila. PA., p.638.

    Google Scholar 

  • Pellet, P.E., McKnight, J.L.C., Jenkins, F. and Roizman, B. (1985) Nucleotide sequence and predicted amino acid sequence of a protein encoded in a small herpes simplex virus DNA fragment capable of trans inducing α genes. Proc. Natl Acad. Sci. USA, 82, 5870–4.

    Article  Google Scholar 

  • Poffenberger, K. and Roizman, B. (1985) Studies on a non-inverting genome of a viable herpes simplex virus 1. Presence of head to tail linkages in packaged genomes and requirement for circularization after infection. J. Virol., 53, 589–95.

    Google Scholar 

  • Post, L.E., Mackem, S. and Roizman, B. (1981) The regulation of genes of herpes simplex virus: expression of chimeric genes produced by fusion of thymidine kinase with α gene promoters. Cell, 24, 555–65.

    Article  PubMed  CAS  Google Scholar 

  • Post, L.E. and Roizman, B. (1981) Ageneralized technique for the deletion of specific genes in large genomes: α gene 22 of herpes simplex virus 1 is not essential for growth. Cell, 25, 227–32.

    Article  PubMed  CAS  Google Scholar 

  • Preston, C.M., Frame, M.C. and Campbell, M.E.M. (1988) A complex formed between cell components and an HSV structural polypeptide binds to a viral immediate early gene regulatory DNA sequence. Cell, 52, 425.

    Article  PubMed  CAS  Google Scholar 

  • Preston, V.G., Coates, A.M., and Rixon, F.J. (1983) Identification and characterization of a herpes simplex virus gene product required for encapsidation of viral DNA. J. Virol., 45, 1056–64.

    PubMed  CAS  Google Scholar 

  • Rawls, W.E., Gardner, H.L., Flanders, R.W. et al. (1971) Genital Herpes in 2 social groups. Am. J. Obstet. Gynecol., 110, 682.

    PubMed  CAS  Google Scholar 

  • Read, G.S. and Frenkel, N. (1983) Herpes simplex virus mutants defective in virion associated shut-off of host polypeptide synthesis and exhibiting abnormal synthesis of α (immediate early) viral polypeptides. J. Virol., 46, 498–512.

    PubMed  CAS  Google Scholar 

  • Rice, S.A. and Knipe, D.M. (1990) Genetic evidence for two distinct functions of the herpes simplex virus α protein ICP27. J. Virol., 64, 1704–15.

    PubMed  CAS  Google Scholar 

  • Roizman, B. and Furlong, D. (1974) The replication of herpesviruses, in Comprehensive Virology vol 3 (eds H. Frenkel-Conrat and R.R. Wagner), Plenum Press, NY, pp. 229–403.

    Google Scholar 

  • Roizman, B., Carmichel, L.E., Deinhardt, F. et al. (1981) Herpesviridae. Definition, provisional nomenclature and taxonomy. Intervirol., 16, 201–17.

    Article  CAS  Google Scholar 

  • Roizman, B. and Tognon, M. (1983) Restriction endonuclease patterns of herpes simplex virus DNA: Application to diagnosis and molecular epidemiology. Proc. Symp. on New Horizons in Diagnostic Virology. Curr. Topics Microbial. and Immunol., 104, 275–86.

    Google Scholar 

  • Roizman, B. and Sears, A.E. (1987) An inquiry into the mechanism of herpes simplex virus latency. Annu. Rev. Microbiol., 41, 543–71.

    Article  PubMed  CAS  Google Scholar 

  • Roizman, B. (1990) Herpesviridae: A Brief Introduction, in Virology (eds B.N. Fields, D.M. Knipe, R.M. Channock et al.), Raven Press, New York, pp. 1787–93.

    Google Scholar 

  • Rowley, A.H., Whitley, R.J., Lakeman, F.D. and Wolinsky, S. (1990) Rapid detection of herpes simplex virus DNA in cerebrospinal fluid of patients with herpes simplex encephalitis. Lancet, 440–1.

    Google Scholar 

  • Sacks, W.R. and Schaffer, P.A. (1987) Deletion mutants in the gene encoding the herpes simplex virus type 1 immediate early protein ICPO exhibit impaired growth in cell culture. J. Virol., 61, 829–39.

    PubMed  CAS  Google Scholar 

  • Safrin, S., Assaykeen, T., Follansbee, S. and Mills, J. (1990) Foscarnet therapy for acyclovir-resistant mucocutaneous herpes simplex virus infection in 26 AIDS patients: preliminary data. J. Inf. Dis., 161, 1078–84.

    Article  CAS  Google Scholar 

  • Salhuddin, S.Z., Ablashi, D.V., Markham, P.D. et al. (1986) Isolation of a new virus HBLV, in patients with lymphoproliferative disorders. Science, 234, 596.

    Article  Google Scholar 

  • Scrag, J.D., Prasad, B.V.V., Rixon, F.J. and Chiu, W. (1989) Three dimensional structure of the HSV-1 nucleocapsid. Cell, 56, 651–60.

    Article  Google Scholar 

  • Schnewiess, K.E. (1962) Serologische Untersuchungen zur Typendifferenzierung des Herpesvirus Hominis. Z. Immununitaesforsch Exp, Ther., 124, 24–8.

    Google Scholar 

  • Schwartz, J. and Roizman, B. (1969) Concerning the egress of herpes simplex virus from infected cells: electron and light microscope observat ions. Virology, 38, 42–9.

    Article  PubMed  CAS  Google Scholar 

  • Sears, A.E. Halliburton, I.W., Meignier, B. et al. (1985) Herpes simplex virus mutant deleted in the α 22 gene: growth and gene expression in permissive and restrictive cells, and establishment of latency in mice. J. Virol., 55, 338–46.

    PubMed  CAS  Google Scholar 

  • Sheldrick, P. and Berthelot, N. (1975) Inverted repetitions in the chromosome of herpes simplex virus. Cold Spring Harbor Symp. Quant. Biol., 39, 667–8.

    Article  PubMed  Google Scholar 

  • Spear, P.G. and Roizman, B. (1972) Proteins specified by Herpes Simplex Virus; V Purification and structural protein s of the herpesvirion. J. Virol., 9, 431–9.

    PubMed  Google Scholar 

  • Stanberry, L.R., Bernstein, D.I., Burke, R.L. et al. (1987) Vaccination with recombinant herpes simplex virus glycoproteins: Protection against initial and recurrent genital herpes. J. Inf. Dis., 155,914–20.

    Article  CAS  Google Scholar 

  • Steiner, I., Spivack, J.G., Deshmane, S.L. et al. (1990) A herpes simplex virus type 1 mutant containing a nontransinducing Vmw65 protein establishes latent infection in vivo in the absence of viral replication and reactivates efficiently from explanted trigeminal ganglia. J. Virol., 64, 1630–8.

    PubMed  CAS  Google Scholar 

  • Stevens, J.G. Wagner, E., Dev. Rac. O. et al. (1987) RNA complimentary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science, 235, 1056.

    Article  PubMed  CAS  Google Scholar 

  • St. Clair, M.H., Furman, P.A., Lubbers, C.A. and Elion, G.B. (1980) Inhibition of cellular and virally induced deoxyribonucleic acid polymerases by the triphosphate of acyclovir. Antimicrob. Agents Chemother., 18, 741–5.

    Article  Google Scholar 

  • Stow, N.D. and Stow, E.C. (1985) Isolation and characterization of a herpes simplex type 1 mutant containing a deletion in the gene encoding the immediate early polypeptide Vmw110. J. Gen. Virol., 67, 2571–85.

    Article  Google Scholar 

  • Sullivan-Bolyai, J., Hull, H.F., Wilson, C. and Corey, L. (1983) Neonatal Herpes simplex infections in King County Washington: Increasing incidence and epidemiological correlates. J. Am. Med. Assoc., 250, 3059.

    Article  CAS  Google Scholar 

  • Vlazny, D.A. and Frenkel, N. (1981) Replication of herpes simplex virus DNA: location of replication recognition signals within defective virus genomes. Proc. Natl Acad. Sci. USA, 78, 742–6.

    Article  PubMed  CAS  Google Scholar 

  • Vlazny, D.A., Kwong, A. and Frenkel, N. (1982) Site specific cleavage packaging of herpes simplex virus DNA and the selective maturation of nucleocapsids containing full length viral DNA. Proc. Natl Acad. Sci. USA, 79, 1423–7.

    Article  PubMed  CAS  Google Scholar 

  • Wadsworth, S., Jacob, R.J. and Roizman, B. (1975) Anatomy of herpes simplex virus DNA II; Size composition and arrangement of the inverted terminal repetitions. J. Virol., 15, 1487–97.

    PubMed  CAS  Google Scholar 

  • Wagner, E.K. and Roizman, B. (1969) RNA synthesis in cells infected with herpes simplex virus. I. The patterns of RNA synthess in productively infected cells. J. Virol., 4, 36–46.

    PubMed  CAS  Google Scholar 

  • Wagner, M.M. and Summers, W.C. (1978) Structure of the joint region and the termini of the DNA of herpes simplex virus type 1 J. Virol., 27, 374–87.

    PubMed  CAS  Google Scholar 

  • Wagner, E.K. (1984) Individual HSV transcripts: characterization of specific genes, in The Herpesviruses vol. 3, (Ed. B. Roizman), New York, Plenum Press, pp. 45–104.

    Google Scholar 

  • Wagner, E.K., Devi-Rao, G., Feldman, L.T. et al. (1988) Physical characterization of the herpes simplex virus latency-associated transcript in neurons. J. Virol., 62, 1194.

    PubMed  CAS  Google Scholar 

  • Wechsler, S.L., Nesburn, A.B., Watson, R., et al. (1988) Fine mapping of the latency related gene of herpes simplex virus type 1: alternative splicing produces distinct latency related RNAs containing open reading frames. J. Virol., 62, 4051–8.

    PubMed  CAS  Google Scholar 

  • Whitley, R.J., Nahmias, A.J., Soorng, S.J. et al. (1980) Vidarabine therapy of neonatal herpes simplex infection. Pediatrics, 66, 495–501.

    PubMed  CAS  Google Scholar 

  • Whitley, R.J., Alford, C.A., Hirsch, M.S. et al. (1986) Vidarabine versus Acyclovir in Herpes simplex encephalitis. New Engl. J. Med., 314, 144–9.

    Article  PubMed  CAS  Google Scholar 

  • Whitley, R.J. Soong S.-J., Linnemann, C. Jr., et al. (1982) Herpes simplex encephalitis: clinical assessment. J. Am. Med. Assoc., 247, 317–20.

    Article  CAS  Google Scholar 

  • Wildy, P. (1973) Herpes history and classification, in The Herpes Viruses (Ed. A.S. Kaplan) Academic Press, NY, pp. 1–25.

    Google Scholar 

  • Wudunn, D. and Spear. P.G. (1989) Initial interaction of herpes simplex virus with cells is binding to heparin sulfate. J. Virol., 63, 52–8.

    PubMed  CAS  Google Scholar 

  • Wu, C.A., Nelson, N.I., McGeoch, D.J. and Challberg, M.D. (1988) Identification of the herpes simplex virus type 1 genes required for origin dependent DNA synthesis. J. Virol., 62, 435–43.

    PubMed  CAS  Google Scholar 

  • Zarling, J.M., Moran, P.A., Brewer, L. et al. (1988) Herpes simplex virus (HSV) specific proliferative and cytotoxic T-cell responses in humans immunized with an HSV Type 2 glycoprotein subunit vaccine. J. Virol., 62, 4481–5.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barker, D.E., Roizman, B., Kovler, M.B. (1992). Molecular biology of herpes simplex virus. In: Wright, D., Archard, L. (eds) Molecular and Cell Biology of Sexually Transmitted Diseases. Molecular and Cell Biology of Human Diseases Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2384-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2384-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5051-7

  • Online ISBN: 978-94-011-2384-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics