Skip to main content

The allelopathic potential of aromatic shrubs in phryganic (east Mediterranean) ecosystems

  • Chapter
Allelopathy

Abstract

One of the characteristic types of mediterranean ecosystems is phrygana, occurring not only around the Mediterranean Basin, but in all other regions of the Earth with a mediterranean-type climate (synonyms of phrygana: batha — Israel, tomillares — Spain, renosterbos — S. Africa, gariga — Italy, coastal sage — California). Particularly in Greece, this ecosystem type occupies approximately 13% of the surface of the country (Diamantopoulos, 1983). According to Aschmann’s definition of a mediterranean climate (1973), these open and low shrub communities occur at the dry end of the precipitation gradient, whereas, at the wet end, dense, evergreen sclerophyll communities (maquis) develop. The dominant life-form in phrygana is that of therophytes (>40%), but their physiognomy is determined by woody plants, adapted to cope with the summer drought of the mediterranean climate through the mechanism of seasonal dimorphism (Margaris, 1981).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Argyris, J. (1977) Seed ecology of some phryganic species. PhD Thesis, University of Athens, Greece.

    Google Scholar 

  • Aschmann, H. (1973) Distribution and peculiarity of Mediterranean ecosystems, in Mediterranean-Type Ecosystems (eds F. di Castri and H. Mooney), Springer-Verlag, Berlin, pp. 11–19.

    Chapter  Google Scholar 

  • Bartholomew, B. (1970) Bare zone between California shrub and grassland communities: the role of animals. Science, 170, 1210–12.

    Article  PubMed  CAS  Google Scholar 

  • Belaiche, P. (1979) Traité de Phytothérapie et d’Aromathérapie I. L’Aromatogramme, Maloine S. A., Paris.

    Google Scholar 

  • Christensen, N. L. and Muller, C. H. (1975) Effects of fire on factors controlling plant growth in Adenostoma chaparral. Ecol. Monogr., 45, 29–55.

    Article  Google Scholar 

  • Diamantopoulos, J. (1983) Structure and distribution of phryganic ecosystems of Greece. PhD Thesis, Univ. of Thessaloniki, Greece.

    Google Scholar 

  • Elad, Y. and Misaghi, I. J. (1985) Chemically mediated interactions between plants and other organisms, in Recent Advances in Phytochemistry (eds G. A. Cooper-Driver, T. Swain, and E. E. Conn), Plenum Press, New York and London, pp. 21–45.

    Google Scholar 

  • Friedman, J. and Orshan, G. (1975) The distribution, emergence and survival of seedling of Artemisia herba-alba Asso. in the Negev desert of Israel in relation to distance from the adult plants. J. Ecol., 63, 627–32.

    Article  Google Scholar 

  • Gibbon, G. H. and Pirt, S. J. (1971) The degradation of α-pinene by Pseudomonas PX1. FEBS Letters, 18, 103–5.

    Article  PubMed  CAS  Google Scholar 

  • Gibbon, G. H., Millis, N. F. and Pirt S. J. (1972) Degradation of α-pinene by bacteria. Proc. IVth Int. Fermentation Symp: Fermentation Technology Today, pp. 609–12.

    Google Scholar 

  • Gunsalus, I. C. and Marshall, V. P. (1971) Monoterpene dissimilation: chemical and genetic models. CRC Crit. Rev. Microbiol., 291–310.

    Google Scholar 

  • Halligan, J. P. (1973) Bare areas associated with shrub stands in grasslands: the case of Artemisia californica. Bioscience, 23, 429–32.

    Article  Google Scholar 

  • Halligan, J. P. (1975) Toxic terpenes from Artemisia californica. Ecology, 56, 990–1003.

    Google Scholar 

  • Halligan, J. P. (1976) Toxicity of Artemisia californica to four associated herb species. Amer. Midl. Nat., 95, 406–21.

    Article  Google Scholar 

  • Hazlett, D. L. and Hoffman, G. R. (1975) Plant species distributional patterns in Artemisia tridentata and Artemisia cana dominated vegetation in western North Dakota. Bot. Gaz., 136, 72–7.

    Article  Google Scholar 

  • Janssen, A. M., Scheffer, J. J. C. and Baerheim-Svendsen, A. (1987) Antimicrobial activity of essential oils: a 1976–1986 literature review. Aspects of the test methods. Planta Medica, 53, 395–8.

    Article  PubMed  CAS  Google Scholar 

  • Katz, D. A., Sneh, B. and Friedman, J. (1987) The allelopathic potential of Coridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98, 53–66.

    Article  Google Scholar 

  • Kelsey, R. G., Stevenson, T. T., Scholl J. P. et al. (1978) The chemical composition of the litter and soil in a community of Artemisia tridentata spp. vaseyana. Biochem. Syst. Ecol., 6, 193–200.

    Article  CAS  Google Scholar 

  • Lynch, J. M. (1982) Limits to microbial growth in soil. J. Gen. Microbiol., 128, 405–10.

    Google Scholar 

  • Margaris, N. S. (1981) Adaptive strategies in plants dominating Mediterranean-type ecosystems, in Mediterranean-Type Shrublands (eds F. di Castri, D. W. Goodal, and R. L. Specht), Elsevier, Amsterdam, pp. 309–15.

    Google Scholar 

  • McCahon, C. B., Kelsey R. G., Sheridan R. P. and Shafizadeh, F. (1973) Physiological effects of compounds extracted from sagebrush, Bull. Torrey Bot. Club, 100, 23–8.

    Article  CAS  Google Scholar 

  • Muller, C. H. (1965) Inhibitory terpenes volatilized from Salvia shrubs. Bull. Torrey Bot. Club, 92, 38–45.

    Article  CAS  Google Scholar 

  • Muller, C. H. (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull. Torrey Bot. Club, 93, 332–51.

    Article  CAS  Google Scholar 

  • Muller, C. H. and del Moral, R. (1966) Soil toxicity induced by terpenes from Salvia leucophylla. Bull. Torrey Bot. Club, 93, 130–7.

    Article  CAS  Google Scholar 

  • Muller, C. H. and del Moral, R. (1971) Role of animals in suppression of herbs by shrubs. Science, 173, 462–3.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. H., Muller, W. H. and Haines, B. L. (1964) Volatile growth inhibitors produced by shrubs. Science, 143, 471–3.

    Article  PubMed  CAS  Google Scholar 

  • Muller, C. H., Hanawalt, R. B. and McPherson, J. K. (1968a) Allelopathic control of herb growth in the fire cycle of California chaparral. Bull. Torrey Bot. Club, 95, 225–31.

    Article  Google Scholar 

  • Muller, W. H. and Hauge, R. (1967) Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling anatomy. Bull. Torrey Bot. Club, 94, 182–91.

    Article  CAS  Google Scholar 

  • Muller, W. H., Lorber, P. and Haley, B. (1968b) Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling growth and respiration. Bull. Torrey Bot. Club, 95, 415–22.

    Article  CAS  Google Scholar 

  • Rice, E. (1974) Allelopathy, Academic Press, New York.

    Google Scholar 

  • Rice, E. (1978) Allelopathy — an update. Bot. Rev., 45, 15–109.

    Article  Google Scholar 

  • Thanos, C. A. and Skarou, F. (1988) The ecophysiology of seed germination in thyme (Coridothymus capitatus). Book of Abstracts, 6th Congress of FESPP, Split (Yugoslavia).

    Google Scholar 

  • Vokou, D. (1983) Volatile oils and their role in phryganic ecosystems. PhD Thesis, Univ. of Thessaloniki Greece.

    Google Scholar 

  • Vokou, D. and Bessière, J. -M. (1985) Volatile constituents of Teucrium polium. J. Nat. Products (Lloydia), 48, 498–9.

    Article  CAS  Google Scholar 

  • Vokou, D. and Margaris, N. S. (1982) Volatile oils as allelopathic agents, in Aromatic Plants: Basic and Applied Aspects (eds N. S. Margaris, A. Koedam, and D. Vokou), Martinus Nijhoff, The Hague, pp. 59–72.

    Google Scholar 

  • Vokou, D. and Margaris, N. S. (1986a) Variation of volatile oil concentration of Mediterranean aromatic shrubs Thymus capitatus Hoffmag et Link, Satureja thymbra L., Teucrium polium L., and Rosmarinus officinalis L. Int. J. Biometeor., 30, 147–55.

    Article  CAS  Google Scholar 

  • Vokou, D. and Margaris, N. S. (1986b) Autoallelopathy of Thymus capitatus. Oecol. Plant., 7, 157–63.

    Google Scholar 

  • Vokou, D. and Margaris, N. S. (1988) Decomposition of terpenes by soil microorganisms. Pedobiologia, 31, 413–19.

    CAS  Google Scholar 

  • Vokou, D., Margaris, N. S. and Lynch, J. M. (1984) Effects of volatile oils from aromatic shrubs on soil microorganisms. Soil Biol. Biochem., 16, 509–13.

    Article  CAS  Google Scholar 

  • Weaver, T. W. and Klarich, D. (1977) Toxic effects of volatile exudates from Artemisia tridentata Nutt. on soil microbes. Amer. Midl. Nat., 97, 508–12.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vokou, D. (1992). The allelopathic potential of aromatic shrubs in phryganic (east Mediterranean) ecosystems. In: Rizvi, S.J.H., Rizvi, V. (eds) Allelopathy. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2376-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2376-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5048-7

  • Online ISBN: 978-94-011-2376-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics