Skip to main content

Development of the insect Malpighian tubule

  • Chapter
Epithelial Organization and Development

Abstract

The study of epithelial development in insects has been dominated by the epidermis since both the larval and adult epidermal cells secrete a cuticle whose patterned elements reflect the differentiated state of the underlying cells (Lawrence, 1973). The main thrust of this research has been towards an understanding of the patterning of the epidermis and for this purpose it is useful to investigate a relatively complex system in which the identity of individual cells is reflected in specific units in the pattern (Stern, 1954; Wigglesworth, 1954; Nüsslein-Volhard and Wieschaus, 1980). However, for an understanding of the processes underlying the generation of a cellular epithelium — a sheet of cells which are coherently attached to one another, reproducibly arranged in an ordered array and out of which patterns of differentiated cells develop — a much simpler epithelium is a better system to study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, N.E. (1988) Embryonic and imaginal requirements for wingless, a segment polarity gene in Drosophila. Devi Biol., 125, 96–108.

    Article  CAS  Google Scholar 

  • Bate, C.M. and Martinez-Arias, A. (1991) The embryonic origin of imaginal discs in Drosophila. Development, 112, 755–61.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. and Oschmann, J.L. (1972) Transporting Epithelia, Academic Press, New York.

    Google Scholar 

  • Berridge, M.J., Gupta, B.L., Oschman, J.L. and Wall, B.J. (1976) Salivary gland development in the blowfly, Callophora erythrocephala. J. Morph., 149, 459–82.

    Article  Google Scholar 

  • Campos-Ortega, J.A. (1988) Cellular interactions during early neurogenesis of Drosophila melanogaster. Trends Neurosci., 11, 400–5.

    Article  PubMed  CAS  Google Scholar 

  • Campos-Ortega, J.A. and Hartenstein, V. (1985) The Embryonic Origin of Drosophila melanogaster, Springer-Verlag, Berlin.

    Google Scholar 

  • Colony, P.C. and Neutra, M.R. (1983) Epithelial differentiation in the fetal rat colon. 1. Plasma membrane phosphatase activity. Devl Biol., 97, 349–63.

    Article  CAS  Google Scholar 

  • Cooper, K. (1938) Concerning the origin of the polytene chromosomes of Diptera. Proc. Natn. Acad. Sci. U.S.A., 24, 452–8.

    Article  CAS  Google Scholar 

  • Edgar, B.A. and O’Farrell, P.H. (1989) Genetic control of cell division patterns in the Drosophila embryo. Cell, 57, 177–87.

    Article  PubMed  CAS  Google Scholar 

  • Ekblom, P., Vestweber, D. and Kemler, R. (1986) Cell matrix interactions and cell adhesion during development. Ann. Rev. Cell Biol., 2, 27–47.

    Article  PubMed  CAS  Google Scholar 

  • Fleming, T.P. and Johnson, M.H. (1988) From egg to epithelium. Ann. Rev. Cell Biol., 4, 459–85.

    Article  PubMed  CAS  Google Scholar 

  • Fristrom, D. (1982) Septate junctions in imaginal disks of Drosophila: a model for the redistribution of septa during cell rearrangement. J. Cell Biol., 94, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Gaul, U. and Weigel, D. (1991) Regulation of Krüppel expression in the anläge of the Malpighian tubules in the Drosophila embryo. Mech. Devel., 33, 57–68.

    Article  Google Scholar 

  • Gonzalez, F., Swales, L., Bejsovec, A., Skaer, H. and Martinez-Arias, A. (1991) Secretion and transcellular movement of the wingless protein in the Drosophila embryo. Mech. Devel., 35, 43–54.

    Article  CAS  Google Scholar 

  • Grantham, J.J., Qualizza, P.B. and Irwin, R.L. (1974) Net fluid secretion in proximal straight tubules in vitro: role of PAH. Am. J. Physiol., 226, 191–7.

    PubMed  CAS  Google Scholar 

  • Hakim, R.S., Baldwin, K.M. and Bayer, P.E. (1988) Cell differentiation in the embryonic midgut of the tobacco horn worm, Manduca sexta. Tissue Cell, 1, 51–62

    Article  Google Scholar 

  • Harbecke, R. and Janning, W. (1989) The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties. Genes Devel., 3, 114–22.

    Article  PubMed  CAS  Google Scholar 

  • Henson, H. (1932) The development of the alimentary canal in Pieris brassicae and the endodermal origin of the Malpighian tubules of insects. Q. Jl Microsc. Sci., 75, 283–309.

    Google Scholar 

  • Jan, L.Y. and Jan, Y.N. (1990) How might the diversity of potassium channels be generated? Trends Neurosci., 13, 415–19.

    Article  PubMed  CAS  Google Scholar 

  • Janning, W., Lutz, A. and Wissen, D. (1986) Clonal analysis of the blastoderm anläge of the Malpighian tubules in Drosophila melanogaster. Roux’s Arch. Devi Biol., 195, 22–32.

    Article  Google Scholar 

  • Lamb, M.J. (1982) The DNA content of polytene nuclei in midgut and Malpighian tubule cells of adult Drosophila melanogaster. Roux’s Arch. Devi Biol., 191, 381–4.

    Article  CAS  Google Scholar 

  • Lawrence, P.A. (1973) The development of spatial patterns in the integument of insects, in Developmental Systems: Insects (eds S.J. Counce and C.H. Waddington), Academic Press, London, pp. 157–209.

    Google Scholar 

  • le Bivic, A., Hirm, M. and Reggio, H. (1988) HT-29 cells are an in vitro model for the generation of polarity during embryonic differentiation. Proc. Natn. Acad. Sci. U.S.A., 85, 136–40.

    Article  Google Scholar 

  • Leptin, M. and Grunewald, B. (1990) Cell shape changes during gastrulation. Development, 110, 73–84.

    PubMed  CAS  Google Scholar 

  • Madara, J.L., Neutra, M.R. and Trier, J.S. (1981) Junctional complexes in fetal rat small intestine during morphogenesis. Devl Biol., 86, 170–8.

    Article  CAS  Google Scholar 

  • Maddrell, S.H.P. (1991) The fastest fluid-secreting cell known: the upper Malpighian tubule cell of Rhodnius. Bioessays, 13, 357–62.

    Article  Google Scholar 

  • Maddrell, S.H.P. and Overton, J. (1985) Maintenance of function in single epithelial cells spatially isolated from similar cells. J. Embryol. Exp. Morph., 90, 409–14.

    PubMed  CAS  Google Scholar 

  • Maddrell, S.H.P., Lane, N.J., Harrison, J.B. and Gardiner, B.O.C. (1985) DNA replication in binucleate cells of the Malpighian tubules of hemipteran insects. Chromosoma, 91, 201–9.

    Article  CAS  Google Scholar 

  • Morata, G. and Lawrence, P.A. (1977) The development of wingless, a homoeotic mutation of Drosophila. Devl Biol., 56, 227–40.

    Article  CAS  Google Scholar 

  • Nüsslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment number and polarity in Drosophila. Nature, 287, 795–801.

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard, C., Wieschaus, E. and Kluding, H. (1984) Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux’s Arch. Devl Biol., 193, 267–82.

    Article  Google Scholar 

  • Poulson, D.F. (1950) Histogenesis, organogenesis and differentiation in the embryo of Drosophila melanogaster, in Biology of Drosophila (ed. M. Demerec), Chapman & Hall, London, pp. 168–274.

    Google Scholar 

  • Redemann, N., Gaul, U. and Jäckle, H. (1988) Disruption of a putative Cyszinc interaction eliminates the biological activity of the Krüppel finger protein. Nature, 332, 90–2.

    Article  PubMed  CAS  Google Scholar 

  • Rijsewijk, F., Schuermann, M., Wagenwaar, E., Parren, P., Weigel, D. and Nusse, R. (1987) The Drosophila homologue of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50, 649–57.

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Boulan, E. and Nelson, W.J. (1989) Morphogenesis of the polarized epithelial cell type. Science, 245, 718–25.

    Article  PubMed  CAS  Google Scholar 

  • Rühle, H. (1932) Das larvale Tracheensystem von Drosophila melanogaster Meigen und seine Variabilität. Z. wiss. Zoöl., 141, 159–243.

    Google Scholar 

  • Savage, A.A. (1956) The development of the Malpighian tubules of Schistocerca gregaria (Orthoptera). Q. Jl Microsc. Sci., 97, 599–615.

    Google Scholar 

  • Schulz, R.A., Xie, X., Andres, A.J. and Galewsky, S. (1991) Endoderm-specific expression of the Drosophila mex 1 gene. Devl Biol., 143, 206–11.

    Article  CAS  Google Scholar 

  • Skaer, H. leB. (1989) Cell division in Malpighian tubule development in Drosophila melanogaster is regulated by a single tip cell. Nature, 342, 566–9.

    Article  Google Scholar 

  • Skaer, H. leB. (1992) Cell proliferation and rearrangement in the development of the Malpighian tubules of the Hemipteran, Rhodnius prolixus, Devi Biol., 150, 372–80.

    Article  CAS  Google Scholar 

  • Skaer, H. leB. and Martinez-Arias, A. (1992) The wingless product is required for cell proliferation in the Malpighian tubule anlage of Drosophila melanogaster, submitted.

    Google Scholar 

  • Skaer, H. leB., Harrison, J.B. and Maddrell, S.H.P. (1990) Physiological and structural maturation of a polarised epithelium: the Malpighian tubules of a blood-sucking insect, Rhodnius prolixus. J. Cell Sci., 96, 537–47.

    Google Scholar 

  • Skaer, H. leB., Maddrell, S.H.P. and Harrison, J.B. (1987) The permeability properties of septate junctions in Malpighian tubules of Rhodnius. J. Cell Sci., 88, 251–65.

    PubMed  Google Scholar 

  • Smith, A.V. and Orr-Weaver, T.L. (1991) The regulation of the cell cycle during Drosophila embryogenesis: the transition to polyteny. Development, 112, 997–1008.

    PubMed  CAS  Google Scholar 

  • Snodgrass, R.E. (1935) Principles of Insect Morphology, McGraw-Hill, New York.

    Google Scholar 

  • Sonnenblick, B.P. (1939) The salivary glands in the embryo of Drosophila melanogaster. Rec. Gen. Soc. Am., 8, 137.

    Google Scholar 

  • Stern, C. (1954) Two or three bristles. Am. Sci., 42, 213–47.

    Google Scholar 

  • Strasburger, M. (1932) Bau, Funktion und Variabilität des Darmtraktus von Drosophila melanogaster Meigen. Z. wiss. Zoöl., 140, 539–649.

    Google Scholar 

  • Technau, G.M. and Campos-Ortega, J.A. (1985) Fate mapping in wild-type Drosophila melanogaster. II. Injections of horseradish peroxidase in cells of the early gastrula stage. Roux’s Arch. Devl Biol., 194, 196–212.

    Article  Google Scholar 

  • Tepass, U., Theres, C. and Knust, E. (1990) crumbs encodes an EGF-like protein expressed on apical membranes of Drosophila epithelial cells and required for organization of epithelia. Cell, 61, 787–99.

    Article  PubMed  CAS  Google Scholar 

  • van den Heuvel, M., Nusse, R., Johnston, P. and Lawrence, P. (1989) Distribution of the wingless product in Drosophila embryos: a protein involvedin cell-cell communication. Cell, 59, 739–49.

    Article  PubMed  Google Scholar 

  • Vega-Salas, D.E., Salas, P.J.I, and Rodriguez-Boulan, E. (1988) Exocytosis of vacuolar membrane compartment (VAC): a cell-cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J. Cell Biol., 107, 1717–28.

    Article  PubMed  CAS  Google Scholar 

  • Warmke, J., Drysdale, R. and Ganetsky, B. (1991) A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science, 252, 1560–2.

    Article  PubMed  CAS  Google Scholar 

  • Wessing, A. and Eichelberg, D. (1978). The Genetics and Biology of Drosophila, Vol. 2C (eds M. Ashburner and I. Wright) Academic Press, London, pp. 1–42.

    Google Scholar 

  • Wieschaus, E. and Riggleman, R. (1987) Autonomous requirements for the segment polarity gene armadillo during Drosophila embryogenesis. Cell, 49, 177–84.

    Article  PubMed  CAS  Google Scholar 

  • Wigglesworth, V.B. (1939) The Principles of Insect Physiology, Menthuen, London.

    Google Scholar 

  • Wigglesworth, V.B. (1954) The Physiology of Insect Metamorphosis, Cambridge University Press, Cambridge.

    Google Scholar 

  • Wood, R.L. (1990) The septate junction limits mobility of lipophilic markers in plasma membrane of Hydra vulgaris (attenuata). Cell Tiss. Res., 259, 61–6.

    Article  Google Scholar 

  • Ziomek, C.A. and Johnson, M.H. (1980) Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell, 21, 935–42.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Skaer, H.l.B. (1992). Development of the insect Malpighian tubule. In: Fleming, T.P. (eds) Epithelial Organization and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2354-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2354-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5040-1

  • Online ISBN: 978-94-011-2354-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics