Skip to main content

Cell adhesion and the basement membrane in early epidermal morphogenesis

  • Chapter
Epithelial Organization and Development

Abstract

The primary processes of vertebrate development include cell division, differentiation and morphogenesis (Edelman, 1988). Morphogenesis can be further divided into the processes of adhesion, and migration, which are controlled by adhesion components (receptors, ligands/ co-receptors and associated cytoskeletal components). We are investigating the molecular mechanisms by which morphogenesis is manifest in stratifying epidermis. Emphasis is placed on the basal and suprabasal cell populations and the integrin class of adhesion receptors. We believe that the integrin receptors regulate functions in these epidermal cells that are common to epithelium in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J.C. and Watt, F.M. (1989) Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature, 340, 307–9.

    CAS  PubMed  Google Scholar 

  • Adams, J.C. and Watt, F.M. (1990) Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes α5ß1 integrin loss from the cell surface. Cell, 63, 425–35.

    CAS  PubMed  Google Scholar 

  • Adams, J.C., Furlong, R.A. and Watt, F.A. (1991) Production of scatter factor by ndk, a strain of epithelial cells, and inhibition of scatter factor activity by suramin. J. Cell Sci., 98, 385–94.

    PubMed  Google Scholar 

  • Akiyama, S.K., Nagata, K. and Yamada, K.M. (1990) Cell surface receptors for extracellular matrix components. Biochim. Biophys. Acta, 1031, 91–110.

    CAS  PubMed  Google Scholar 

  • Albelda, S.M. and Buck, C.A. (1990) Integrins and other cell adhesion molecules. FASEB J., 4, 2868–80.

    CAS  PubMed  Google Scholar 

  • Asselineau, D., Bernhard, B., Bailly, C. and Darmon, M. (1985) Epidermal morphogenesis and induction of the 67 kD keratin polypeptide by culture of human keratinocytes at the liquid-air interface. Expl Cell Res., 159, 536–9.

    CAS  Google Scholar 

  • Barrrandon, Y. and Green, H. (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell, 50, 1131–7.

    Google Scholar 

  • Beck, K., Hunter, I. and Engel, J. (1990) Structure and function of laminin: anatomy of a multidomain glycoprotein. FASEB J., 4, 148–60.

    CAS  PubMed  Google Scholar 

  • Bohnert, A., Hornung, J., Mackenzie, I.C. and Fusenig, N.E. (1986) Epithelial-mesenchymal interactions control basement membrane production and differentiation in cultured and transplanted mouse keratinocytes. Cell Tiss. Res., 244, 413–29.

    CAS  Google Scholar 

  • Boyce, S. T. and Ham, R.G. (1985) Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum free media. J. Tiss. Cult. Meth., 9, 83–93.

    Google Scholar 

  • Brown, N.H., King, D.L., Wilcox, M. and Kafatos, F.C. (1989) Developmentally regulated alternative splicing of Drosophila integrin PS2 α transcripts. Cell, 59, 185–95.

    CAS  PubMed  Google Scholar 

  • Brown, T.A., Bouchard, T., St. John, T., Wayner, E. and Carter, W.G. (1991) Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J. Cell Biol., 113, 207–21.

    CAS  PubMed  Google Scholar 

  • Burridge, K., Fath, K., Kelly, T., Nuckolls, G. and Turner, C. (1988) Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. A. Rev. Cell Biol., 4, 487–525.

    CAS  Google Scholar 

  • Carter, W.G. and Wayner, E.A. (1988) Characterization of a collagen-binding, phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J. Biol Chem., 263, 4193–201.

    CAS  PubMed  Google Scholar 

  • Carter, W.G., Kaur, P., Gil, S.G., Gahr, P.J. and Wayner, E.A. (1991a). Distinct functions for integrins α3ßl in focal adhesions and α6ß4 bullous pemphigoid antigen in a new stable anchoring contact (SAC) of keratinocytes: relation to hemidesmosomes. J. Cell Biol., 111, 3141–52.

    Google Scholar 

  • Carter, W.G., Ryan, M.C. and Gahr, P.J. (1991b) Epiligrin, a new cell adhesion ligand for integrin α3ßl in epithelial basement membranes. Cell, 65, 599–610.

    Google Scholar 

  • Carter, W.G., Wayner, E.A., Bouchard, T.S. and Kaur, P. (1990) The role of integrins α2ßl and α3ßl in cell-cell and cell-substrate adhesion of human epidermal cells. J. Cell Biol., 110, 1387–404.

    CAS  PubMed  Google Scholar 

  • Clark, R.A.F. (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Invest. Derm., Suppl. 94, 128s–134s.

    CAS  PubMed  Google Scholar 

  • Collins, J.E., Legan, P.K., Kenny, T.P., MacGarvie, J., Holton, J.L. and Garrod, D.R. (1991) Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains. J. Cell Biol., 113, 381–91.

    CAS  PubMed  Google Scholar 

  • DeLuca, M., Tamura, R.N., Kajiji, S. et al. (1990) Polarized integrin mediates human keratinocyte adhesion to basal lamina. Proc. Natn. Acad. Sci. U.S.A., 87, 6888–92.

    CAS  Google Scholar 

  • Duband, J.-L., Dufour, S., Yamada, S.S., Yamada, K.M. and Thiery, J.P. (1991) Neural crest cell locomotion induced by antibodies to ßl integrins. J. Cell Sci., 98, 517–32.

    CAS  PubMed  Google Scholar 

  • Eady, R.A.J. (1986) Babes, blisters and basement membranes: from sticky molecules to epidermolysis bullosa. Dowling Oration, 23 April, 161–9.

    Google Scholar 

  • Eady, R.A.J. (1988) The basement membrane: interface between the epithelium and the dermis: structural features. Arch. Dermatol., 124, 709–12.

    CAS  PubMed  Google Scholar 

  • Eady, R.A.J., Tidman, M.J., Heagerty, A.H.M. and Kennedy, A.R. (1987) Approaches to the study of epidermolysis bullosa. Curr. Probl. Derm., 17, 127–41.

    CAS  PubMed  Google Scholar 

  • Edelman, G.M. (1988) Morphoregulatory molecules. Biochemistry, 27, 3533–43.

    CAS  PubMed  Google Scholar 

  • Ekblom, P. (1989) Developmentally regulated conversion of mesenchyme to epithelium. FASEB J., 3, 2141–50.

    CAS  PubMed  Google Scholar 

  • Elices, M.J. and Hemler, M.E. (1989) The human integrin VLA-2 is a collagen receptor on some cells and a collagen/laminin receptor on others. Proc. Natn. Acad. Sci. U.S.A., 86, 9906–10.

    CAS  Google Scholar 

  • Elices, M.J., Urry, L.A. and Hemler, M.E. (1991) Receptor functions for the integrin VLA-3: fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations. J. Cell Biol., 112, 169–81.

    CAS  PubMed  Google Scholar 

  • Ellison, J. and Garrod, D.R. (1984) Anchoring filaments of the amphibian epidermal-dermal junction traverse the basal lamina entirely from the plasma membrane of hemidesmosomes to the dermis. J. Cell Sci., 72, 163– 72.

    CAS  PubMed  Google Scholar 

  • Engvall, E., Earwicker, D., Haaparanta, T., Ruoslahti, E. and Sanes, J.R. (1990) Distribution and isolation of four laminin variants: tissue restricted distribution of heterotrimers assembled from five different subunits. Cell Regulation, 1, 731–40.

    CAS  PubMed  Google Scholar 

  • Fine, J.-D. (1988) Antigenic features and structural correlates of basement membranes. Arch. Dermatol., 124, 713–17.

    CAS  PubMed  Google Scholar 

  • Fine, J.-D., Horiguchi, Y. and Couchman, J.R. (1989) 19-DEJ-1, a hemidesmosome-anchoring filament complex-associated monoclonal antibody. Arch. Dermatol., 125, 520–3.

    CAS  PubMed  Google Scholar 

  • Fuchs, E. (1990a) Epidermal differentiation: the bare essentials. J. Cell Biol., 111, 2807–14.

    Google Scholar 

  • Fuchs, E. (1990b) Epidermal differentiation. Curr. Opin. Cell Biol., 2, 1028–35.

    Google Scholar 

  • Gedde-Dahl, T. (1986) Clinical heterogeneity in epidermolysis bullosa: speculations on causation and consequence for research. J. Invest. Dermatol., 86, 91–3.

    CAS  PubMed  Google Scholar 

  • Gerdes, J., Lemke, H., Baisch, H., Wacker, H.-H., Schwab, U. and Stein, H. (1984) Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol., 133, 1710–15.

    CAS  PubMed  Google Scholar 

  • Gipson, I.K., Grill, S.M., Spurr, S.J. and Brennan, S.J. (1983) Hemidesmosome formation in vitro. J. Cell Biol., 97, 849–57.

    CAS  PubMed  Google Scholar 

  • Giudice, G.J., Squiquera, H.L., Elias, P. and Diaz, L.A. (1991) Identification of two collagen-like domains within the bullous pemphigoid antigen, BP180. J. Clin. Invest., 87, 734–8.

    CAS  PubMed  Google Scholar 

  • Goodwin, L., Hill, J.E., Raynor, K., Raszi, L., Manabe, M. and Cowin, P. (1990) Desmoglein shows extensive homology to the caherin family of cell adhesion molecules. Biochem. Biophys. Res. Commun., 173, 1224–30.

    CAS  PubMed  Google Scholar 

  • Gordon, J.I. (1989) Intestinal epithelial differentiation: new insights from chimeric and transgenic mice. J. Cell Biol., 108, 1187–94.

    CAS  PubMed  Google Scholar 

  • Green, H. (1977) Terminal differentiation of cultured human epidermal cells. Cell, 11, 405–16.

    CAS  PubMed  Google Scholar 

  • Griepp, E.B. and Robbins, E.S. (1988) Epithelium, in Cell and Tissue Biology, 6th edn (ed. L. Weiss), Urban & Schwarzenberg, Inc., Baltimore, MD, pp. 115-50.

    Google Scholar 

  • Hall, P.A. and Watt, F.A. (1989) Stem cells: the generation and maintenance of cellular diversity. Development, 106, 619–33.

    CAS  PubMed  Google Scholar 

  • Haynes, B.F., Telen, M.J., Hale, L.P. and Denning, S.M. (1989) CD44 — a molecule involved in leukocyte adherence and T-cell activation. Immunol. Today, 10, 423–8.

    CAS  PubMed  Google Scholar 

  • Hemler, M.E. (1988) Adhesive protein receptors on hematopoetic cells. Immunol. Today, 9, 109.

    CAS  PubMed  Google Scholar 

  • Hemler, M.E. (1990) VLA proteins in the integrin family: structures, functions, and their role on leukocytes. A. Rev. Immunol., 8, 365–400.

    CAS  Google Scholar 

  • Hertle, M.D., Adams, J.C. and Watt, F.M. (1991) Integrin expression during human epidermal development in vivo and in vitro. Development, 112, 193–206.

    CAS  PubMed  Google Scholar 

  • Holton, J.L., Kenny, T.P., Legan, P.K. et al. (1990) Desmosomal glycoproteins 2 and 3 (desmocollins) show N-terminal similarity to calcium-dependent cell-cell adhesion molecules. J. Cell Sci., 97, 239–46.

    CAS  PubMed  Google Scholar 

  • Humphries, M.J. (1990) The molecular basis and specificity of integrin-ligand interactions. J. Cell Sci., 97, 585–92.

    CAS  PubMed  Google Scholar 

  • Izzard, C.S. and Lochner, L.R. (1976) Cell-to-substrate contacts in living fibroblasts: an interference reflexion study with an evaluation of the technique. J. Cell Sci., 21, 129–59.

    CAS  PubMed  Google Scholar 

  • Jones, J.C.R., Kurpakus, M.A., Cooper, H.M. and Quaranta, V. (1991) A function for the integrin α6ß4 in the hemidesmosome. Cell Regulation, 2, 427–38.

    CAS  PubMed  Google Scholar 

  • Jones, J.C.R., Yokoo, K.M. and Goldman, R.D. (1986) Is the hemidesmosome a half desmosome? An immunological comparison of mammalian desmosomes and hemidesmosomes. Cell Motil. Cytoskel., 6, 560–9.

    CAS  Google Scholar 

  • Katz, S.I. (1984) The epidermal basement membrane zone — structure, ontogeny, and role in disease. J. Am. Acad. Dermatol., 11, 1025–37.

    CAS  PubMed  Google Scholar 

  • Kaufmann, R., Frosch, D., Westphal, C., Weber, L. and Klein, C.E. (1989) Integrin VLA-3: ultrastructural localization at cell-cell contact sites of human cell cultures. J. Cell Biol., 109, 1807–15.

    CAS  PubMed  Google Scholar 

  • Keene, D.R., Sakai, L.Y., Lunstrum, G.P., Morris, N.P. and Burgeson, R.E. (1987) Type VII collagen forms an extended network of anchoring fibrils. J. Cell Biol., 104, 611–20.

    CAS  PubMed  Google Scholar 

  • Kennedy, A.R., Heagerty, A.H.M., Ortonne, J.-P., Hsi, B.-L., Yeh, C.-J.G. and Eady, R.A. (1985) Abnormal binding of an anti-amnion antibody to epidermal basement membrane provides a novel diagnostic probe for junctional epidermolysis bullosa. Br. J. Dermatol., 113, 651–9.

    CAS  PubMed  Google Scholar 

  • Klatte, D.H., Kurpakus, M.A., Grelling, K.A. and Jones, J.C.R. (1989) Immunochemical characterization of three components of the hemidesmosome and their expression in cultured epithelial cells. J. Cell Biol., 109, 3377–90.

    CAS  PubMed  Google Scholar 

  • Klein, C.E., Steinmayer, T., Mattes, J.M., Kaufmann, R. and Weber, L. (1990) Integrins of normal human epidermis: differential expression, synthesis and molecular structure. Br. J. Dermatol., 123, 171–8.

    CAS  PubMed  Google Scholar 

  • Koda, J.E. and Bernfield, M. (1984) Heparan sulfate proteoglycans from mouse mammary epithelial cells. J. Biol. Chem., 259, 11763–70.

    CAS  PubMed  Google Scholar 

  • Kopan, R., Grazina, T. and Fuchs, E. (1987) Retinoids as important regulators of terminal differentiation: examining keratin expression in individual epidermal cells at various stages of keratinization. J. Cell Biol., 105, 427–40.

    CAS  PubMed  Google Scholar 

  • Krawczyk, W.S. and Wilgram, G.F. (1973) Hemidesmosome and desmosome morphogenesis during epidermal wound healing. J. Ultrastruct. Res., 45, 93–101.

    CAS  PubMed  Google Scholar 

  • Kurpakus, M.A. and Jones, J.C.R. (1991) A novel hemidesmosomal plaque component: tissue distribution and incorporation into assembling hemidesmosomes in an in vitro model. Expl Cell Res., 194, 139–46.

    CAS  Google Scholar 

  • Languino, L.R., Gehisen, K.R., Wayner, E.A., Carter, W.G., Engvall, E. and Ruoslahti, E. (1989) Endothelial cells use α2ßl integrin as a laminin receptor. J. Cell Biol., 109, 2455–62.

    CAS  PubMed  Google Scholar 

  • Larjava, H., Peltonen, J., Akiyama, S.K. et al. (1990) Novel function for ß1 integrins in keratinocyte cell-cell interactions. J. Cell Biol., 110, 803–15.

    CAS  PubMed  Google Scholar 

  • Lavker, R.M. and Sun, T.-T. (1983) Epidermal stem cells. J. Invest. Dermatol., 81, 121s–127s.

    CAS  PubMed  Google Scholar 

  • Lever, W.F. and Schaumburg-Lever, G. (1989) Histopathology of the Skin, 7th edn, J.B. Lippincott Co., Philadelphia, PA.

    Google Scholar 

  • Mali, M., Jaakkola, P., Arvilommi, A.M. and Jalkanen, M. (1990) Sequence of human syndecan indicates a novel gene family of integral membrane proteoglycans. J. Biol. Chem., 265, 6884–9.

    CAS  PubMed  Google Scholar 

  • Marchisio, P.C., Bondanza, S., Cremona, O., Cancedda, R. and DeLuca, M. (1991) Polarized expression of integrin receptors (α6ß4, α2ß1, α3ß1, and αvß5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes. J. Cell Biol., 112, 761–73.

    CAS  PubMed  Google Scholar 

  • Martin, G.R. and Timpl, R. (1987) Laminin and other basement membrane components. A. Rev. Cell Biol., 3, 57–85.

    CAS  Google Scholar 

  • Mechanic, S., Raynor, K., Hill, J.E. and Cowin, P. (1991) Desmocollins form a subset of the Cadherin family of cell adhesion molecules. Proc. Natn. Acad. Sci. U.S.A., 88, 4476–80.

    CAS  Google Scholar 

  • Neyfakh, A.A., Tint, LS., Svitkina, T.M., Bershadsky, A.D. and Gelfand, V.I. (1983) Visualization of cellular focal contacts using a monoclonal antibody to 80 kD serum protein adsorbed on the substratum. Expl Cell Res., 149, 387–96.

    Google Scholar 

  • Nickoloff, B., Karabin, G., Barker, J. et al. (1991) Cytokine networks: immunobiology surfaces. J. NIH Res., 3, 71–4.

    Google Scholar 

  • Odland, G.F. (1958) The fine structure of the interrelationship of cells in the human epidermis. J. Biophys. Biochem. Cytol., 4, 529–38.

    CAS  PubMed  Google Scholar 

  • Parker, A.E., Wheeler, G.N., Arnemann, J. et al. (1991) Desmosomal glycoproteins II and III: cadherin-like junctional molecules generated by alternative splicing. J. Biol. Chem., 266, 10438–45.

    CAS  PubMed  Google Scholar 

  • Plantefaber, L.C. and Hynes, R.O. (1989) Changes in integrin receptors on oncogenically transformed cells., Cell, 56, 281–90.

    CAS  PubMed  Google Scholar 

  • Potten, CS. and Morris, R.J. (1988) Epithelial stem cells in vivo. J. Cell Sci., Suppl. 10, 45–62.

    CAS  Google Scholar 

  • Regauer, S., Seiler, G.R., Barrandon, Y., Easley, K.W. and Compton, C.C. (1990) Epithelial origin of cutaneous anchoring fibrils. J. Cell Biol., 111, 2109–15.

    CAS  PubMed  Google Scholar 

  • Rheinwald, J.G. (1980) Serial cultivation of normal human epidermal keratinocytes. Meth. Cell Biol., 21A, 229–54.

    CAS  Google Scholar 

  • Rouselle, P., Lunstrum, G.P., Keene, D.R. and Burgeson, R.E. (1991) Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J. Cell Biol., 114, 567–76.

    Google Scholar 

  • Ruoslahti, E. (1991) Integrins. J. Clin. Invest., 87, 1–5.

    CAS  PubMed  Google Scholar 

  • Rutishauser, U. and Jessell, T.M. (1988) Cell adhesion molecules in vertebrate neural development. Biol Rev., 68, 819–57.

    CAS  Google Scholar 

  • Sakai, L.Y., Keene, D.R., Morris, N.P. and Burgeson, R.E. (1986) Type VII collagen is a major structural component of anchoring fibrils. J. Cell Biol., 103, 1577–86.

    CAS  PubMed  Google Scholar 

  • Schwarz, M.A., Owaribe, K., Kartenbeck, J. and Franke, W.W. (1990) Desmosomes and hemidesmosomes: constitutive molecular components. A. Rev. Cell Biol., 6, 461–91.

    CAS  Google Scholar 

  • Shienvold, F.L. and Kelly, D.E. (1976) The hemidesmosome: new fine structural features revealed by freeze-fracture techniques. Cell Tiss. Res., 172, 289–307.

    CAS  Google Scholar 

  • Shiohara, T., Moriya, N., Saizawa, K., Gotoh, C, Yagita, H. and Nagashima, M. (1991) Evidence for involvement of lymphocyte function-associated antigen 1 in T cell migration to epidermis. J. Immunol., 146, 840–5.

    CAS  PubMed  Google Scholar 

  • Smith, L.T. and Sybert, V.P. (1990) Intra-epidermal retention of type VII collagen in a patient with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol, 94, 261–4.

    CAS  PubMed  Google Scholar 

  • Sonnenberg, A., Calafat, J., Janssen, H. et al. (1991) Integrin α6ß4 complex is located in hemidesmosomes, suggesting a major role in epidermal cell-basement membrane adhesion. J. Cell Biol., 113, 907–17.

    CAS  PubMed  Google Scholar 

  • Sonnenberg, A., Linders, C.J.T., Modderman, P.W., Damsky, C.H., Aumailley, M. and Timpl, R. (1990) Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that α6ßl but not a6ß4 functions as a major receptor for fragment E8. J. Cell Biol., 110, 2145–55.

    CAS  PubMed  Google Scholar 

  • Sonnenberg, A., Modderman, P.W. and Hogervorst, F. (1988) Laminin receptor on platelets is the integrin VLA-6. Nature, 336, 487–9.

    CAS  PubMed  Google Scholar 

  • Springer, T.A. (1990) Adhesion receptors of the immune system. Nature, 346, 425–34.

    CAS  PubMed  Google Scholar 

  • Staehelin, L.A. (1974) Structure and function of intercellular junctions. Int. Rev. Cytol., 39, 191–283.

    CAS  PubMed  Google Scholar 

  • Stepp, M.A., Spurr-Michaud, S., Tisdale, A., Elwell, J. and Gipson, I.K. (1990) α6ß4 integrin heterodimer is a component of hemidesmosomes. Proc. Natn. Acad. Sci. U.S.A., 87, 8970–4.

    CAS  Google Scholar 

  • St John, T., Meyer, J., Idzerda, R. and Gallatin, W.M. (1990) Expression of CD44 confers a new adhesive phenotype on transfected cells. Cell., 60, 45–52.

    CAS  PubMed  Google Scholar 

  • Stoler, A., Kopan, R., Duvic, M. and Fuchs, E. (1988) Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J. Cell Biol., 107, 427–46.

    CAS  PubMed  Google Scholar 

  • Straus, A.H., Carter, W.G., Wayner, E.A. and Hakomori, S.-I. (1989) Mechanism of fibronectin-mediated cell migration: dependence or independence of cell migration susceptibility on RGDS-directed receptor (Integrin). Exp Cell Res., 183, 126–39.

    CAS  PubMed  Google Scholar 

  • Sun, T., Eichner, R., Nelson, W.G. et al. (1983) Keratin classes: molecular markers for different types of epithelial differentiation. J. Invest. Dermatol., 81, 109s–115s.

    CAS  PubMed  Google Scholar 

  • Takeichi, M. (1988) The Cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639–55.

    CAS  PubMed  Google Scholar 

  • Tanaka, T., Korman, N.J., Shimizu, H. et al. (1990) Production of rabbit antibodies against carboxy-terminal epitopes encoded by bullous pemphigoid cDNA. J. Invest. Dermatol., 94, 617–23.

    CAS  PubMed  Google Scholar 

  • Tanaka, T., Parry, D.A.D., Klaus-Kovtun, V., Steinert, P.M. and Stanley, J.R. (1991) Comparison of molecularly cloned bullous pemphigoid antigen to desmoplakin I confirms that they define a new family of cell adhesion junction plaque proteins. J. Biol. Chem., 266, 12555–9.

    CAS  PubMed  Google Scholar 

  • Toda, K.-I., Tuan, T.-L., Brown, P.J. and Grinnell, F. (1987) Fibronectin receptors of human keratinocytes and their expression during cell culture. J. Cell Biol., 105, 3097–104.

    CAS  PubMed  Google Scholar 

  • Tsuji, T., Hakomori, S.-I. and Osawa, T. (1991) Identification of human galactoprotein b3, an oncogenic transformation-induced membrane glycoprotein, as VLA-3 α subunit: the primary structure of human integrin α3. J. Biochem., 109, 659–65.

    CAS  PubMed  Google Scholar 

  • Verrando, P., Pisani, A. and Ortonne, J.-P. (1988) The new basement membrane antigen recognized by the monoclonal antibody GB3 is a large size glycoprotein: modulation of its expression by retinoic acid. Biochim. Biophys. Acta, 942, 45–56.

    CAS  PubMed  Google Scholar 

  • Volk, T. and Geiger, B. (1986a) A-CAM: a 135-kD receptor of intercellular adherens junction. I. Immunoelectron microscopic localization and biochemical studies. J. Cell Biol., 103, 1441–50.

    Google Scholar 

  • Volk, T. and Geiger, B. (1986b) A-CAM: a 135-kD receptor of intercellular adherens junctions. II. Antibody-mediated modulation of junction formation. J. Cell Biol., 103, 1451–64.

    Google Scholar 

  • Volk, T., Fessier, L.I. and Fessier, J.H. (1990) A role for integrin in the formation of sarcomeric cytoarchitecture. Cell, 63, 525–36.

    CAS  PubMed  Google Scholar 

  • Walsh, L.J., Lavker, R.M. and Murphy, G.F. (1990) Biology of disease. Determinants of immune cell trafficking in the skin. Lab. Invest., 63, 592–9.

    CAS  PubMed  Google Scholar 

  • Watt, F.M. (1984) Selective migration of terminally differentiating cells from the basal layer of cultured human epidermis. J. Cell Biol., 98, 16–21.

    CAS  PubMed  Google Scholar 

  • Watt, F.M. (1989) Terminal differentiation of epidermal keratinocytes. Curr. Opin. Cell Biol., 1, 1107–15.

    CAS  PubMed  Google Scholar 

  • Watt, F.M. (1991) Cell culture models of differentiation. FASEB J., 5, 287–94.

    CAS  PubMed  Google Scholar 

  • Wayner, E.A. and Carter, W.G. (1987) Identification of multiple cell adhesion receptors for type VI collagen and fibronectin in human fibrosarcoma cells possessing unique α and common ß subunits. J. Cell Biol., 105, 1873–84.

    CAS  PubMed  Google Scholar 

  • Wayner, E.A., Carter, W.G., Piotrowicz, R.S. and Kunicki, T.J. (1988) The function of multiple extracellular matrix receptors in mediating cell adhesion to extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifically inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J. Cell Biol., 107, 1881–91.

    CAS  PubMed  Google Scholar 

  • Wayner, E.A., Garcia-Pardo, A., Humphries, M.J., McDonald, J.A. and Carter, W.G. (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J. Cell Biol., 109, 1321–30.

    CAS  PubMed  Google Scholar 

  • Wolpert, L. (1988) Stem cells: a problem in asymmetry. J. Cell Sci., Suppl. 10, 1–9.

    CAS  Google Scholar 

  • Yurchenco, P.D. and Schittny, J.C. (1990) Molecular architecture of basement membranes. FASEB J., 4, 1577-90.

    CAS  PubMed  Google Scholar 

  • Zieske, J.D., Bukusoglu, G. and Gipson, I.K. (1989) Enhancement of vinculin synthesis by migrating squamous epithelium. J. Cell Biol., 109, 571–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carter, W.G., Symington, B.E., Kaur, P. (1992). Cell adhesion and the basement membrane in early epidermal morphogenesis. In: Fleming, T.P. (eds) Epithelial Organization and Development. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2354-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2354-9_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5040-1

  • Online ISBN: 978-94-011-2354-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics