Skip to main content

Solitary chemosensory cells

  • Chapter
Fish Chemoreception

Part of the book series: Fish & Fisheries Series ((FIFI,volume 6))

Abstract

In tetrapod vertebrates, taste buds differentiate in oral epithelium under the influence of the appropriate innervation. In the gnathostome fishes, taste buds are found in the oropharyngeal epithelium, and may also occur in the external skin of the actinopterygian and dipnoan fishes. Taste bud-like organs are also found on the oral tentacles of hagfish, and in the pharynx of larval and adult lampreys. In addition to these organs, there exists a system of differentiated epithelial sensory cells, which closely resemble gustatory receptor cells but are not organized into discrete end organs. In certain examples, such cells have been shown to be chemosensory, but the physiology, the neural connections, and the distribution of the system are poorly known. Cells of comparable histological character have been recorded from a number of bony fishes, including dipnoans, from hagfish, lampreys, and from some anuran larvae. In selachian fishes, similar cells may occur in the oropharyngeal epithelium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas, M.H., Dodd, J. and Al-Awqati, Q. (1988) A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science, 242, 1047–50.

    Article  PubMed  CAS  Google Scholar 

  • Anrep, B. von, (1880) Ueber die physiologische Wirkung des Cocain. Pflugers Arch. ges. Physiol., 21, 38–77.

    Article  Google Scholar 

  • Baatrup, E. (1983) Terminal buds in the branchial tube of the brook lamprey (Lampetra planeri (Bloch))-putative respiratory monitors. Acta zool. Stockh., 64, 139–47.

    Article  Google Scholar 

  • Baatrup, E. (1985) Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch). Chem. Senses, 10, 549–58.

    Article  CAS  Google Scholar 

  • Baatrup, E. and Døving, K.B. (1985) Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey, Lampetra planeri (Bloch). Chem. Senses, 10, 559–66.

    Article  CAS  Google Scholar 

  • Bardach, J., Fujiya, M. and Holl, A. (1967) Investigations of external chemoreceptors of fishes, in Olfaction and Taste II (ed. T. Hayashi), Pergamon Press, Oxford, pp. 647–65.

    Google Scholar 

  • Bardach, J.E. and Case, J. (1965) Sensory capabilities of the modified fins of squirrel hake (Urophycis chuss) and searobins (Prionotus carolinus and P. evolans). Copeia 1965, 194–206.

    Article  Google Scholar 

  • Bartheld, CS. von and Meyer, D.L. (1985) Trigeminal and facial innervation of cirri in three teleost species. Cell Tissue Res., 241, 615–22.

    Article  Google Scholar 

  • Beidler, L.M. (1965) Comparison of gustatory receptors, olfactory receptors, and free nerve endings. Cold Spring Harb. Symp. quant. Biol., 30, 191–200.

    Article  PubMed  CAS  Google Scholar 

  • Belousova, T.A., Devitsina, G.V. and Malyukina, G.A. (1983) Functional peculiarities offish trigeminal system. Chem. Senses, 8, 121–30.

    Article  Google Scholar 

  • Bishai, H.M. (1962) Reactions of larval and young salmonids to different hydrogen ion concentrations. J. Cons. perm. int. Explor. Mer, 27, 181–91.

    Google Scholar 

  • Blanchi, D. and Guardabassi, A. (1977) Changes in neuromast chemosensitivity in Xenopus laevis kept under various environmental conditions. J. Endocrinol., 74, 157–8.

    Article  PubMed  CAS  Google Scholar 

  • Blanchi, D., Camino, E. and Guardabassi, A. (1976) Chemoreception of the lateral-line organs in intact, hypophysectomized, and prolactin-treated hypophysectomized Xenopus laevis specimens. Comp. Biochem. Physiol., 55A, 301–7.

    Article  Google Scholar 

  • Blaxter, J.H.S. and Fuiman, L.A. (1990) The role of the sensory systems of herring larvae in avoiding predatory fishes. J. mar. Mol. Ass. U.K., 70, 413–27.

    Article  Google Scholar 

  • Caprio, J. (1975) High sensitivity of catfish taste receptors to amino acids. Comp. Biochem. Physiol., 52A, 247–51.

    Article  Google Scholar 

  • Caprio, J. (1988) Peripheral filters and chemoreceptor cells in fishes, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga), Springer-Verlag, New York, pp. 313–38.

    Chapter  Google Scholar 

  • Cole, L.W. (1910) Reactions of frogs to chlorides of ammonium, potassium, sodium and lithium. J. comp. Neurol., 20, 601–14.

    Article  Google Scholar 

  • Connes, R., Granie-Prie, M., Diaz, J.P. and Paris, J. (1988) Ultrastructure des bourgeons de goût du téléostéen marin Dicentrarchus labrax L. Can. J. Zool. , 66, 2135–42.

    Article  Google Scholar 

  • Crozier, W.J. (1916) Regarding the existence of the ‘common chemical sense’ in vertebrates. J. comp. Neurol., 26, 1–8.

    Article  CAS  Google Scholar 

  • Fahrenholz, C. (1936) Die sensiblen Einrichtungen der Neunaugenhaut. Z. mikrosk. Anal. Forsch., 40, 323–80.

    Google Scholar 

  • Finger, T.E. (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol. Bull. Mar. biol. Lab., Woods Hole., 163, 154–61.

    Article  Google Scholar 

  • Finger, T.E. (1983) The gustatory system in teleost fish, in Fish Neurology and Behaviour. Vol. 1 (eds R.G. Northcutt and R.E. Davis), Univ. Michigan Press, Ann. Arbor, pp. 285–309.

    Google Scholar 

  • Finger, T.E. (1988) Organization of chemosensory systems within the brains of bony fishes, in Sensory Biology of Aquatic Animals (eds J. Atema, R.R. Fay, A.N. Popper and W.N. Tavolga), Springer-Verlag, New York, pp. 339–63.

    Chapter  Google Scholar 

  • Fishelsen, L. (1984) A comparative study of ridge mazes on surface epithelial cell-membranes of fish scales (Pisces, Teleostei). Zoomorphology, 104, 231–8.

    Article  Google Scholar 

  • Fox, H., Lane, E.B. and Whitear, M. (1980) Sensory nerve endings and receptors in fish and amphibians, in The Skin of Vertebrates (Linn. Soc. Symp. Ser. No. 9) (eds R.I.C. Spearman and P.A. Riley), Acad. Press, London, pp. 271–81.

    Google Scholar 

  • Fujita, T., Kanno, T. and Kobayashi, S. (1988) The Paraneuron, Springer-Verlag, Tokyo, 367 pp.

    Book  Google Scholar 

  • Harris J.E. and Hunt, S. (1975) The fine structure of the epidermis of two species of salmonid fish, the Atlantic salmon (Salmo salar L.) and the brown trout (Salmo trutta L.). I. General organization and filament-containing cells. Cell Tissue Res., 157, 553–65.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, G.M. and Munshi, J.S. Datta (1973) Fine structure of the respiratory organs of the climbing perch, Anabas testudineus (Pisces: Anabantidae). J. Zool. Lond., 170, 201–25.

    Article  Google Scholar 

  • Iger, Y., Abraham, M., Dotan, A., Fattal, B. and Rahamin, E. (1988) Cellular responses in the skin of carp maintained in organically fertilized water. J. Fish Biol., 33, 711–20.

    Article  Google Scholar 

  • Jakubowski, M. (1983) New details of the ultrastructure (TEM, SEM) of taste buds in fishes. Z. mikrosk. -anat. Forsch., 97, 849–62.

    PubMed  CAS  Google Scholar 

  • Jakubowski, M. and Whitear, M. (1990) Comparative morphology and cytology of taste buds in teieosts. Z. mikrosk. -anat. Forsch., 104, 529–60.

    Google Scholar 

  • Katsuki, Y. and Yanagisawa, K. (1982) Chemoreception in the lateral line organ, in Chemoreception in Fishes (ed. T.J. Hara), Dev. in Aquaculture and Fisheries Sci., 8, Elsevier, Amsterdam, pp. 227–42.

    Google Scholar 

  • Katsuki, Y., Hashimoto, T. and Yanagisawa, K. (1970) The lateral-line organ of shark as a chemoreceptor. Adv. Biophys., 1, 1–51.

    PubMed  CAS  Google Scholar 

  • Katsuki, Y., Hashimoto, T. and Kendall, J.I. (1971) The chemoreception in the lateral-line organs of teieosts. Jap. J. Physiol., 21, 99–118.

    Article  CAS  Google Scholar 

  • Katz, U. (1986) The role of amphibian epidermis in osmoregulation and its adaptive response to changing environment, in Biology of the Integument. Vol. 2. Vertebrates (eds J. Bereiter-Hahn, A.G. Matoltsy and K.S. Richards), Springer-Verlag, Berlin, pp. 473–98.

    Google Scholar 

  • Kiyohara, S., Yamashita, S. and Kitoh, J. (1984) Rapid location of fish taste buds by a selective staining method. Bull. Jap. Soc. scient. Fish., 50, 1293–7.

    Article  CAS  Google Scholar 

  • Kiyohara, S., Houman, H., Yamashita, S., Caprio, J. and Marui, T. (1986) Morphological evidence for a direct projection of trigeminal nerve fibres to the primary gustatory center in the sea catfish Plotosus anguillaris. Brain Res. Amsterdam, 379, 353–7.

    Article  CAS  Google Scholar 

  • Kölliker, A. (1886) Histologische Studien an Batrachierlarven. Z. wiss. Zool., 43, 1–40.

    Google Scholar 

  • Kotrschal, K., (1991) Solitary chemosensory cells: taste, common chemical sense or what? Rev. Fish Biol. Fish., 1, 3–22.

    Article  Google Scholar 

  • Kotrschal, K. (1992) Quantitative electron microscopy of solitary chemoreceptor cells in cyprinids and other teleosts. Env. Biol. Fishes., [in press].

    Google Scholar 

  • Kotrschal, K. and Whitear, M. (1988) Chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J. comp. Neurol., 268, 109–20.

    Article  PubMed  CAS  Google Scholar 

  • Kotrschal, K., Whitear, M. and Adam, H. (1984) Morphology and histology of the anterior dorsal fin of Gaidropsarus mediterraneus (Pisces Teleostei), a specialized sensory organ. Zoomorphology, 104, 365–72.

    Article  Google Scholar 

  • Kotrschal, K., Goldschmid, A., Adam, H. and Whitear, M. (1985) The first dorsal fin of Gaidropsarus mediterraneus (Teleostei), a specialized chemosensory organ. Fortschr. Zool., 30, 727–30.

    Google Scholar 

  • Kotrschal, K., Peters, R.C. and Atema, J. (1989) A novel chemosensory system in fish: do rocklings (Ciliata mustela, Gadidae) use their solitary chemosensory receptor cells as fish detectors? Biol. Bull. mar. biol. Lab., Woods Hole, 177, 328–9.

    Google Scholar 

  • Lane, E.B. (1977) Structural aspects of skin sensitivity in the catfish Ictalurus. PhD Thesis, University of London, 143 pp.

    Google Scholar 

  • Lane, E.B. and Whitear, M. (1977) On the occurrence of Merkel cells in the epidermis of teleost fishes. Cell Tissue Res., 182, 235–46.

    PubMed  CAS  Google Scholar 

  • Lane, E.B. and Whitear, M. (1982) Sensory structures at the surface of fish skin. I. Putative chemoreceptors. Zool. J. Linn. Soc., 75, 141–51.

    Article  Google Scholar 

  • Luciano, L., Reale, E. and Ruska, H. (1968) Ãœber eine ‘chemorezeptive’ Sinneszelle in der Trachea der Ratte. Z. Zellforsch., 85, 350–75.

    Article  PubMed  CAS  Google Scholar 

  • Luciano, L., Castellucci, M. and Reale, E. (1981) The brush cells of the common bile duct of the rat. Cell Tissue Res., 218, 403–20.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, M. (1962) Kegel- und andere Sonderzellen der larvalen Epidermis von Froschlurchen. Z. mikrosk. -anat. Forsch., 68, 79–131.

    PubMed  CAS  Google Scholar 

  • Morrill, A.D. (1895) The pectoral appendages of Prionotus and their innervation. J. Morph., 11, 177–92.

    Article  Google Scholar 

  • Nada, O., Hiratsuka, T. and Komatsu, K. (1984) The occurrence of serotonin-containing cells in the esophageal epithelium of the bullfrog Rana catesbiana: a fluorescence histochemical and immunohistochemical study. Histochemistry, 81, 115–18.

    Article  PubMed  CAS  Google Scholar 

  • Olsén, K.H. (1989) Sibling recognition in juvenile Arctic charr, Salvelinus alpinus (L.). J. Fish Biol., 34, 571–81.

    Article  Google Scholar 

  • Ono, R.D. (1980) Fine structure and distribution of epidermal projections associated with taste buds on the oral papillae in some loricariid catfishes (Siluroidei: Loricariidae). J. Morph., 164, 139–59.

    Article  Google Scholar 

  • Onoda, N. and Katsuki, Y. (1972) Chemoreception of the lateral line organ of an aquatic amphibian, Xenopus laevis. Jap. J. Physiol., 22, 87–102.

    Article  CAS  Google Scholar 

  • Parker, G.H. (1912) The relations of smell, taste, and the common chemical sense in vertebrates. J. Acad. nat. Sci. Philad., Ser. 2, 15, 221–34.

    Google Scholar 

  • Peters, R.C, Steenderen, G.W. van and Kotrschal, K. (1987) A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus and Ciliata: Teleostei: Gadidae): electrophysiological evidence. J. mar. biol. Ass. U.K., 67, 819–23.

    Article  Google Scholar 

  • Peters, R.C., Kotrschal, K., Krautgartner, W.-D. and Atema, J. (1989) A novel chemosensory system in fish: electrophysiological evidence for mucus detection by solitary chemoreceptor cells in rocklings (Ciliata mustela, Gadidae). Biol. Bull. mar. biol. Lab., Woods Hole., 177, 329.

    Google Scholar 

  • Peters, R.C., Kotrschal, K. and Krautgartner, W.-D. (1991) Solitary chemosensory cells of Ciliata mustela (Gadidae, Teleostei) are tuned to mucoid stimuli. Chem. Senses, 16, 31–42.

    Article  Google Scholar 

  • Pevsner, R. (1976) Electron microscope study of the taste buds of elasmobranchs, Trigon pastinaca and Raja clavata. Tsitologiya, 18, 561–6. [In Russian with English summary].

    Google Scholar 

  • Puzdrowski, R.L. (1988) Afferent projections of the trigeminal nerve in the goldfish, Carassius auratus. J. Morph., 198, 131–47.

    Article  PubMed  CAS  Google Scholar 

  • Reutter, K. (1974) Cholinergic innervation of scattered sensory cells in fish epidermis. Cell Tissue Res., 149, 143–6.

    Article  PubMed  CAS  Google Scholar 

  • Reutter, K. and Vogel, W.O.P. (1989) Ultrastructure of taste buds in the lungfishes Protopterus and Lepidosiren. Chem. Senses, 14, 192.

    Google Scholar 

  • Reutter, K., Breipohl, W. and Bijvank, G.J. (1974) Taste bud types in fishes. II. Scanning electronmicroscopical investigations on Xiphophorus helleri Heckel (Poeciliidae, Cyprinodontiformes, Teleostei). Cell Tissue Res., 153, 151–65.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, D.C. and Haller, CJ. (1980) The ultrastructurai characteristics of the apical cell in the neurepithelial bodies of the toad lung (Bufo marinus). Cell Tissue Res., 209, 485–98.

    Article  PubMed  CAS  Google Scholar 

  • Roper, S.D. (1989) The cell biology of vertebrate taste receptors. A. Rev. Neurosci., 12, 329–53.

    Article  CAS  Google Scholar 

  • Roth, A. and Tscharntke, H. (1976) Ultrastructure of the ampullary receptors in lungfish and Brachiopterygii. Cell Tissue Res., 173, 95–108.

    Article  PubMed  CAS  Google Scholar 

  • Russell, I.J. (1976) Amphibian lateral line receptors, in Frog Neurobiology (eds R. Llinas and W. Precht), Springer-Verlag, Berlin, pp. 513–50.

    Chapter  Google Scholar 

  • Russell, I.J. and Sellick, P.M. (1976) Measurement of potassium and chloride ion concentrations in the cupulae of the lateral lines of Xenopus laevis. J. Physiol, Lond., 257, 245–55.

    PubMed  CAS  Google Scholar 

  • Schreiner, K.E. (1918) Zur Kenntnis der Zellgranula. Untersuchungen über die feineren Bau der Haut von Myxine glutinosa. I. Teil. Zweite Hälfte. Arch. Mikrosk. Anat. Entwkges., 92, 1–63.

    Article  Google Scholar 

  • Schulte, E. and Holl, A. (1972) Feinbau der Kopftentakel und ihrer Sinnesorgane bei Blennius tentacularis (Pisces, Blenniiformes). Mar. Biol., 12, 67–80.

    Google Scholar 

  • Sheldon, R.E. (1909) The reactions of the dogfish to chemical stimuli. J. comp. Neurol. Psychol., 19, 273–311.

    Article  Google Scholar 

  • Silver, W.L. (1987) The common chemical sense, in Neurobiology of Taste and Smell (eds T.L. Finger and W.L. Silver), Wiley, New York, pp. 65–87.

    Google Scholar 

  • Silver, W.L. and Finger, T.E. (1984) Electrophysiological examination of a non-olfactory, non-gustatory chemosense in the searobin, Prionotus carolinus. J. comp. Physiol., 154A, 167–74.

    Article  Google Scholar 

  • Silver, W.L., Arzt, A.H. and Mason, J.R. (1988) A comparison of the discriminatory ability and sensitivity of the trigeminal and olfactory systems to chemical stimuli in the tiger salamander. J. comp. Physiol., 164A, 55–66.

    Article  Google Scholar 

  • Toyoshima, K., Honda, E., Nakahara, S. and Shimamura, S. (1984) Ultrastructural and histochemical changes in the frog taste organ following denervation. Arch. Histol. Jpn. (Niigata, Jpn), 47, 31–42.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, D. (1983) Fish chemoreception: peripheral anatomy and physiology, in Fish Neurobiology. Vol. 1 (eds R.G. Northcutt and R.E. Davis), Univ. Michigan Press, Ann Arbor, pp. 311–49.

    Google Scholar 

  • Wendelaar Bonga, S.E. and Meis, S. (1981) Effects of external osmolality, calcium and prolactin on growth and differentiation of the epidermal cells of the cichlid teleost Sarotherodon mossambicus. Cell Tissue Res., 221, 109–23.

    Article  PubMed  CAS  Google Scholar 

  • Whitear, M. (1952) The innervation of the skin of teleost fishes. Q. J. Microsc. Sci., 93, 289–305.

    Google Scholar 

  • Whitear, M. (1965) Presumed sensory cells in fish epidermis. Nature. Lond., 208, 703–4

    Article  Google Scholar 

  • Whitear, M. (1971a) The free nerve endings in fish epidermis. J. Zool., Lond., 163, 231–6.

    Article  Google Scholar 

  • Whitear, M. (1971b) Cell specialization and sensory function in fish epidermis. J. Zool., Lond., 163, 237–64.

    Article  Google Scholar 

  • Whitear, M. (1974) The nerves in frog skin. J. Zool., Lond., 172, 503–29.

    Article  Google Scholar 

  • Whitear, M. (1975) Flask cells and epidermal dynamics in frog skin. J. Zool., Lond., 175, 107–49.

    Article  Google Scholar 

  • Whitear, M. (1976) Identification of the epidermal ‘Stiftchenzellen’ of frog tadpoles by electron microscopy. Cell Tissue Res., 175, 391–402.

    Article  PubMed  CAS  Google Scholar 

  • Whitear, M. (1983) The question of free nerve endings in the epidermis of lower vertebrates. Acta Biol. Hung., 34, 303–19.

    Google Scholar 

  • Whitear, M. (1986) The skin of fishes including cyclostomes; epidermis, dermis, in Biology of the Integument. Vol. 2. Vertebrates (eds J. Bereiter-Hahn, A.G. Matoltsy and K.S. Richards), Springer-Verlag, Berlin, pp. 8–64.

    Google Scholar 

  • Whitear, M. (1989) Merkel cells in lower vertebrates. Arch. Histol. CytoI., 52 (Supp.), 415–22.

    Article  Google Scholar 

  • Whitear, M. and Kotrschal, K. (1988) The chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, Teleostei, Gadidae): activity, fine structure and innervation. J. Zool., Lond., 216, 339–66.

    Article  Google Scholar 

  • Whitear, M. and Lane, E.B. (1983a) Oligovillous cells of the epidermis: sensory elements of lamprey skin. J. Zool., Lond., 199, 359–84.

    Article  Google Scholar 

  • Whitear, M. and Lane, E.B. (1983b) Multivillous cells: epidermal sensory cells of unknown function in lamprey skin. J. Zool., Lond., 201, 259–72.

    Article  Google Scholar 

  • Witt, M. and Reutter, K. (1988) Lectin histochemistry on mucous substances of the taste buds and adjacent epithelia of different vertebrates. Histochemistry, 88, 453–61.

    PubMed  CAS  Google Scholar 

  • Witt, M. and Reutter, K. (1990) Electron microscopic demonstration of lectin binding sites in the taste buds of the European catfish Silurus glanis (Teleostei). Histochemistry, 94, 617–28.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M. (1982) Comparative morphology of the peripheral olfactory organ in teleosts, in Chemoreception in Fishes (ed. T.J. Hara), Elsevier, Amsterdam, pp. 39–59.

    Google Scholar 

  • Yamashita, S., Evans, R.E. and Hara, T.J. (1987) Responses of the palatine nerve of the rainbow trout (Salmo gairdneri) to carbon dioxide and to hydrochloric acid. Chem. Senses, 12, 513.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Whitear, M. (1992). Solitary chemosensory cells. In: Hara, T.J. (eds) Fish Chemoreception. Fish & Fisheries Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2332-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2332-7_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5030-2

  • Online ISBN: 978-94-011-2332-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics