Skip to main content

In vitro strain measurement in bone

  • Chapter
Strain Measurement in Biomechanics

Abstract

The initial in vitro measurement of the mechanical properties of bone was by Wertheim (1847) and since then a variety of techniques and analytical procedures have been developed and applied. These techniques include non-destructive methods such as ultrasound, (Abenschein and Hyatt, 1970), holographic interferometry (Manley et al., 1987), photoelastic analysis (Milch, 1940), and the use of semiconductor (Bonfield et al., 1973) and resistance strain gauges (Bonfield and O’Connor, 1978) on whole bones or on specimens of bone in either destructive or non-destructive tests. While each of these methods are suitable in their own right the objective is to obtain a testing procedure that can fulfil the experimental requirements. The maintenance of the moisture state, temperature, applied stress, strain rate and the identification of the anisotropic properties control the strain measurement technique in bone in vitro. For example, in the case of ultrasound the testing frequency is considerably higher than the physiological loading rates. Any strain measuring device should be capable of accommodating the physiological requirements of bone and the effectiveness of the measuring system in terms of its sensitivity, capability and versatility is important for the accurate measurement of strain in bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abenschein, W.G. and Hyatt, G.W. (1970) Ultrasonic and selected physical properties of bone. Clin. Orthop., 69, 294–301.

    Google Scholar 

  • Baggott, D.G. and Lanyon, L.E. (1977) An independent post mortem calibration of electrical resistance strain gauges bonded to bone surfaces in vivo. J. Biomech., 10, 615–22.

    Article  CAS  Google Scholar 

  • Bonfield, W. and Clark, A.E. (1973) Elastic deformation of compact bone. J. Mater. Sci., 8, 1590–4.

    Article  CAS  Google Scholar 

  • Bonfield, W., Datta, P.K., Edwards, B.L. and Plane, D.C. (1973) A capacitance gauge for microstrain measurement. J. Mater. Sci., 8, 1832-4.

    Article  CAS  Google Scholar 

  • Bonfield, W. and Li, C.H. (1966) Deformation and fracture of bone. J. Appl. Phys., 3, 869–74.

    Article  Google Scholar 

  • Bonfield, W. and O’Connor, P.A. (1978) Anelastic deformation and the friction stress of bone. J. Mater. Sci., 13, 202–7.

    Article  Google Scholar 

  • Bundy, K.J. (1978) Experimental studies of the non-uniformity and anisotropy of human compact bone, PhD thesis, Stanford University.

    Google Scholar 

  • Burstein, A.H. and Frankel, V.H. (1968) The viscoelastic properties of some biological materials. Ann. N.Y. Acad. Sci., 146, 158–65.

    Article  CAS  Google Scholar 

  • Carter, D.R. (1978) Anisotropic analysis of strain rosette information from cortical bone. J. Biomech., 11, 199–202.

    Article  CAS  Google Scholar 

  • Carter, D.R., Caler, W.E. and Harris, W.H. (1981) Resultant loads and elastic modulus calibration of long bone cross sections. J. Biomech., 14, 739–45.

    Article  CAS  Google Scholar 

  • Chalmers, G.F. (1982) Materials, construction, performance and characteristics, in Strain Gauge Technology (eds A.L. Window and G.S. Holister), Applied Science Publishers, Barking, pp. 20–5.

    Google Scholar 

  • Currey, J.D. (1988) The effect of drying and re-wetting on some mechanical properties of cortical bone. J. Biomech., 21, 439–41.

    Article  CAS  Google Scholar 

  • Currey, J.D. and Horsman, A. (1981) Strength of the distal radius, in Mechanical Factors and the Skeleton (ed. I.A.F. Stokes), John Libbey, London, pp. 91–7.

    Google Scholar 

  • Dabestani, M. (1989) The deformation behaviour of human compact bone, PhD thesis, University of London.

    Google Scholar 

  • Dabestani, M. and Bonfield, W. (1988) Elastic and anelastic microstrain measurement in human and cortical bone, in Implant Materials in Biofunction (eds C. de Putter, G.L. de Lange, K. de Groot and A.J.C. Lee), Elsevier Science Publishers, Oxford, pp. 435–40.

    Google Scholar 

  • Dempster, W.T. and Liddicoat, R.T. (1952) Compact bone as a non-isotropic material. Am. J. Anat., 91, 331–62.

    Article  CAS  Google Scholar 

  • Evans, F.G. (1959) The Mechanical Properties of Bone, 1st edn, C.C. Thomas, Springfield, IL., p. 11.

    Google Scholar 

  • Evans, F.G. (1973) The Mechanical Properties of Bone, 2nd edn, C.C. Thomas, Springfield, IL., p. 2.

    Google Scholar 

  • Finlay, J.B., Bourne, R.B. and McLean, J. (1982) A technique for the in vitro measurement of principal strains in human tibia. J. Biomech., 15, 723–39.

    Article  CAS  Google Scholar 

  • Frankel, V.H. and Burstein, A.H. (1965) In Biomechanics and Related Bioengineering Topics (ed. R.M. Kennedi), Pergamon Press, Oxford, p. 381.

    Google Scholar 

  • Frankel, V.H. and Burstein, A.H. (1970) Orthopaedic Biomechanics, Lea and Fabiger, Philadelphia, PA.

    Google Scholar 

  • Greenberg, S.W., Gonzalez, G., Gurdjian, E.S. and Thomas, L.M. (1968) Changes in physical properties of bone between the in vivo, freshly dead and embalmed conditions. Proceedings of 12th Stapp Car Crash Conference, Society of Automotive Engineers, New York, pp. 271–9.

    Book  Google Scholar 

  • Guardian, E.S. and Lissner, H.R. (1945) Deformation of the skull in head injury. A study with the stress coat technique. Surg., Gyn. Obst., 81, 679–87.

    Google Scholar 

  • Lanyon, L.E., Hampson, W.G.J., Goodship, A.E. and Shah, J.S. (1975) Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand., 46, 256–68.

    Article  CAS  Google Scholar 

  • Lissner, H.R. and Roberts, V.L. (1966) Evaluation of skeletal implants of human cadavers, in Studies on the Anatomy and Function of Bone and Joints (ed. F.G. Evans), Springer-Verlag, Heidelberg, pp. 113–20.

    Chapter  Google Scholar 

  • Manley, M.T., Ovryn, B. and Stern, L.S. (1987) Evaluation of double-exposure holographic interferometry for biomechanical measurements in vitro. J. Orthop. Res., 5, 144–9.

    Article  CAS  Google Scholar 

  • Milch, H. (1940) Photoelastic studies of bone forms. J. Bone Jt Surg., 22-A, 621–6.

    Google Scholar 

  • Morden, G.C. (1982) Adhesives and installation techniques, in Strain Gauge Technology (eds A.L. Window and G.S. Holister), Applied Science Publishers, Barking, pp. 43–54.

    Google Scholar 

  • Pelker, R.R., Friedlaender, G.E., Markham, T.C., Panjabi, M.M. and Moen, C.J. (1984) Effects of freezing and freeze-drying on the biomechanical properties of rat bone. J. Orthop. Res., 1, 405–11.

    Article  CAS  Google Scholar 

  • Reilly, D.T. and Burstein, A.H. (1975) The elastic and ultimate properties of compact bone tissue. J. Biomech., 8, 393–405.

    Article  CAS  Google Scholar 

  • Schartzer, J., Sumner-Smith, G., Clark, R. and McBroom, R. (1978) Strain gauge analysis of bone response to internal fixation. Clin. Orthop., 132, 244–51.

    Google Scholar 

  • Scott, K. and Owens, A. (1982) Instrumentation, in Strain Gauge Technology (eds A.L. Window and G.S. Holister), Applied Science Publishers, Barking, pp. 139–41.

    Google Scholar 

  • Scott, K. and Owens, A. (1982) Instrumentation, in Strain Gauge Technology (eds A.L. Window and G.S. Holister), Applied Science Publishers, Barking, pp. 169–79.

    Google Scholar 

  • Seldin, E.D. and Hirsch, C. (1966) Factors affecting the determination of the physical properties of femoral cortical bone. Acta Orthop. Scand., 37, 29–48.

    Article  Google Scholar 

  • Stevens, J. and Ray, R.D. (1962) An experimental comparison of living and dead bone in rats 1, physical properties. J. Bone Jt Surg., 44-B, 412-3.

    CAS  Google Scholar 

  • Turner, C.H. and Cowin, S.C. (1988) Errors induced by off-axis measurement of the elastic properties of bone. J. Biomech. Engng., 110, 213–19.

    Article  CAS  Google Scholar 

  • Van Buskirk, W.C., Cowin, S.C. and Ward, R.N. (1981) Ultrasonic measurement of orthopaedic elastic constants of bovine femoral bone. J. Biomech. Engng, 103, 67–71.

    Article  Google Scholar 

  • Wertheim, M.G. (1847) Memoires sur l’elasticite et la cohesion des principaux tissues de corps humain. Annales de Chimie et de Physique (Paris), 21, 385–414.

    Google Scholar 

  • Wright, T.M. and Hayes, W.C. (1979) Strain gauge applications on compact bone. J. Biomech., 12, 471–5.

    Article  CAS  Google Scholar 

  • Wright, K.W.J. and Yettram, A.L. (1977) The transmission of force by the femoral component of a total hip replacement. Conference on Interdisciplinary Trends in Surgery, European Congress of International College of Surgeons, Milan, Italy.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dabestani, M. (1992). In vitro strain measurement in bone. In: Miles, A.W., Tanner, K.E. (eds) Strain Measurement in Biomechanics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2330-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2330-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5029-6

  • Online ISBN: 978-94-011-2330-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics