Skip to main content

Abstract

Solids usually occur as polycrystalline aggregates. Although their macroscopic physical properties may then be averaged over a large number of randomly oriented microcrystals, nevertheless the local environment of almost every individual atom is totally ordered. Thus attempts to understand the physical properties of most solids begin from the model of a single crystal, with the atoms arranged on an infinite lattice. In contrast, a small number of materials occur in an amorphous state with the disordered structure of a glass. Such a structure is not thermodynamically stable and can be visualized as a supercooled liquid that is slowly relaxing back to its equilibrium crystalline state over a long period of time. It is only recently that significant advances have been made in our understanding of amorphous structures as the result, particularly, of low-temperature experiments. We shall review some of the current ideas in §2.6 and §3.5, but the main theme of chapters 2 and 3 refers to crystalline solids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

References

Futher reading

  • Anderson, A.C. ‘Phonon scattering by dislocations’ in Phonon Scattering in Condensed Matter, eds. W. Eisenmerger, K. Lassmann and S. Döttinger, Springer, Berlin, 348 (1984).

    Chapter  Google Scholar 

  • Ashcroft, N.W. and Mermin, N.D. Solid State Physics. Holt, Rinehart and Winston, New York (1976).

    Google Scholar 

  • Berman, R. Thermal Conduction in Solids. Clarendon Press, Oxford (1976).

    Google Scholar 

  • Böttger, H. ‘Vibrational properties of non-crystalline solids’, in Phys. Stat. Solidi, 62B, 9 (1974).

    Article  ADS  Google Scholar 

  • Bron, W.E. ‘Spectroscopy of high frequency phonons’, in Rep. Progr. Phys. 43, 301 (1980).

    Article  ADS  Google Scholar 

  • Callaway, J. ‘Model for lattice thermal conductivity at low temperatures’, in Phys. Rev. 113, 1046 (1959).

    Article  ADS  MATH  Google Scholar 

  • Challis, L.J. ‘Kapitza resistance and acoustic transmission across boundaries at high frequencies’, in J. Phys. C (Solid State) 7, 481 (1974).

    Article  ADS  Google Scholar 

  • Challis, L.J. and de Goër, A.M. ‘Phonon spectroscopy of Jahn—Teller Ions’ in The Dynamical Jahn—Teller Effect in Localised Systems, eds. Y.E. Perlin and M. Wagner, Elsevier, Amsterdam, 533 (1984).

    Google Scholar 

  • Challis, L.J., Kent, A.J. and Rampton, V.W., ‘Phonon emission and scattering in a two-dimensional electron gas in quantizing magnetic fields’ in Phonons 89, eds. S. Hunklinger, W. Ludwig and G. Weiss, World Scientific, Singapore, 967 (1990).

    Google Scholar 

  • Eisenmenger, W. ‘Superconducting tunnel junctions as phonon generators and detectors’, in Physical Acoustics, eds. W.P. Mason and R.N. Thurston, 12, 79, Academic Press, New York (1976).

    Google Scholar 

  • Guyer, R.A. ‘The physics of quantum crystals’, in Solid State Physics, eds. F. Seitz, D. Turnbull and H. Ehrenreich, 23, 413, Academic Press, New York (1969).

    Google Scholar 

  • Kinder, H., ‘Monochromatic phonon generation by superconducting tunnel junctions’ in Nonequilibrium Phonon Dynamics, ed. W.E. Bron, Plenum, New York, 129 (1985).

    Google Scholar 

  • Kinder, H. Weber, J. and Dietsche, W. ‘Kapitza resistance studies using phonon pulse reflection’, in Phonon Scattering in Condensed Matter, ed. H.J. Maris, Plenum, New York (1980), p. 173.

    Chapter  Google Scholar 

  • Kittel, C. Introduction to Solid State Physics. 6th edn., Wiley, New York (1986).

    Google Scholar 

  • Klemens, P.G. ‘Thermal conductivity and lattice vibrational modes’, in Solid State Physics, op. cit., 7, 1 (1958).

    Article  Google Scholar 

  • Mandelbrot, B.B. The Fractal Geometry of Nature, Freeman, San Francisco (1983).

    Google Scholar 

  • Mendelssohn, K. The Quest for Absolute Zero: the Meaning of Low Temperature Physics. 2nd edn., Taylor and Francis, London (1977).

    Google Scholar 

  • Musgrave, M.J.P. Crystal Acoustics. Holden Day, San Francisco (1970).

    MATH  Google Scholar 

  • Northrop, G.A. and Wolfe, J.P. ‘Phonon imaging: theory and applications’in Nonequilibrium Phonon Dynamics, ed. W.E. Bron, Plenum, New York, 165 (1985).

    Google Scholar 

  • Phillips, W.A. Two-level states in glasses Rep. Prog. Phys. 50, 1657 (1987).

    Article  ADS  Google Scholar 

  • von Gutfeld, R.J. ‘Heat Pulse Transmission’, in Physical Acoustics, op. cit., 5, 233 (1968).

    Google Scholar 

  • Weaire, D.L. The vibrational states of amorphous semiconductors’, in Amorphous Solids—Low Temperature Properties, ed. W.A. Philips, Springer, Berlin, 13 (1981).

    Google Scholar 

  • Wyatt, A.F.G. ‘Characteristics of Kapitza conductance’, in Phonon Scattering, op. cit., p. 181.

    Google Scholar 

  • Wybourne, M.N. and Wigmore, J.K. Phonon spectroscopy Rep. Prog. Phys. 51, 923 (1988).

    Article  ADS  Google Scholar 

  • Ziman, J.H. Electrons and Phonons. Clarendon Press, Oxford (1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mc McClintock, P.V.E., Meredith, D.J., Wigmore, J.K. (1992). Phonons. In: Low-Temperature Physics: an introduction for scientists and engineers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2276-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2276-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5010-4

  • Online ISBN: 978-94-011-2276-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics