Skip to main content

Toughened polymers

  • Chapter

Abstract

Commodity plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), and polyvinylchloride (PVC) make up a large of proportion of the total tonnage of plastic currently being used mainly for non-loadbearing applications (e.g. consumer products). However, with the ever-increasing use of plastics in the areas dominated by the use of metal or ceramics, e.g. in the automobile industry, new engineering plastics, both thermoplastics and thermoset resins, have been developed which provide the combinations of lightness and good balance of stiffness, and some also in toughness, over a wide range of temperature applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Paul, D.R. and Barlow, J.W. (1984) A binary interaction model for miscibility of copolymers in blends. Polymer, 25, 487.

    Article  CAS  Google Scholar 

  2. Manson, J.A. and Sperling, L.H. (1976) Polymer Blends and Composites, Plenum Press, New York.

    Google Scholar 

  3. Noolandi, J. and Hong, K.M. (1984) Effect of block copolymers at a demixed homopolymer interface. Macromolecules, 17, 1531.

    Article  CAS  Google Scholar 

  4. Liebler, L. (1982) Theory of phase equilibria in mixtures of copolymers and homopolymers. 2: Interfaces near the consulate point. Macromolecules 15, 1283.

    Article  Google Scholar 

  5. Paul, D.R., Locke, C.E. and Vinsa, C.E. (1973) Chlorinated polyethylene modification of blends derived from waste plastics. Part 1: Mechanical behaviour. Polym. Eng. Sci. 13, 202.

    Article  CAS  Google Scholar 

  6. Locke, C.E. and Paul, D.R. (1973) Graft copolymer modification of polyethylene/polystyrene blends. II: Properties and modified blends. J. Appl. Polym. Sci. 17, 2791.

    Article  CAS  Google Scholar 

  7. Barentsen, W.M. and Heikens, D. (1973) Mechanical properties of PS/LDPE blends. Polymer 14, 549.

    Article  Google Scholar 

  8. Barentsen, W.M., Heikens, D. and Piet, P. (1974) Effect of addition of graft copolymer on the microstructure and impact strength of PS/LDPE blend. Polymer 15, 119.

    Article  CAS  Google Scholar 

  9. Siqueira, D.F., Galenmbeck, F. and Nunes, S.P. (1991) Adhesion and morphology of PVDF/PMMA and compatibilised PVDF/PS interfaces. Polymer 32, 990.

    Article  CAS  Google Scholar 

  10. Keskula, and Paul, D.R. (1987) Methyl-methacrylate grafted rubbers as impact modifier for styrenic polymers. Polym. Sci. Eng. Preprint 57, 674.

    Google Scholar 

  11. Angola, J.C., Fujita, Y., Sakai, T. and Inoue, T. (1989) Compatibiliser-aided toughening in polymer blends consisting of brittle polymer particles dispersed in a ductile polymer matrix. J. Polym. Sci., Polym. Phys. 26, 807.

    Article  Google Scholar 

  12. Choudhary, V., Varma, H.S. and Varma, K. (1991) Polyolefin blends: Effect of EPDM rubber on crystallisation, morphology and mechanical properties of PP/EPDM blend 1. Polymer 32, 2534.

    Article  CAS  Google Scholar 

  13. Choudhary, V., Varma, H.S. and Varma, K. (1991) Effect of EPDM rubber on melt rheology morphology and mechanical properties of PP/HDPE (90/10) blend 2. Polymer 32, 2541.

    Article  CAS  Google Scholar 

  14. Van Gisbergen, J.G.M., Borgmans, C.P.J.H., Van der Sanden, M.C.M. and Lemstra, P.J. (1990) Impact behaviour of PS/EPDM-rubber blends: Influence of electron beam irradiation. Polymer Communications 31, 162.

    Google Scholar 

  15. Jian, R., Quirk, R.P., White, J.L. and Min, K. (1991) Polycarbonate—polystyrene block copolymers and their application as compatibilising agents in polymer blends. Polym. Eng. Sci. 31, 1545.

    Article  Google Scholar 

  16. US Patent 998439.

    Google Scholar 

  17. Borggreve, R.J.M., Gaymans, R.J. and Schuijer, J. (1989) Impact behaviour of nylon-rubber blends: 5. Influence of the mechanical properties of the elastomer. Polymer 30, 71.

    Article  CAS  Google Scholar 

  18. Wroctecki, C., Heim, P. and Gaillard, P. (1991) Rubber toughening of poly(methyl methacrylate). Part 1: Effect of the size and hard layer composition of the rubber particles. Polym. Eng. Sci. 31, 213.

    Article  Google Scholar 

  19. Bucknall, C.B. (ed.) (1977) Toughened Plastics, Applied Science Publishers, London.

    Google Scholar 

  20. Tinker, A.J. (1985) Factors influencing the impact properties of PP/NR blend. Proc. Int. Conf. Toughening of Plastics—II. The Plastic and Rubber Institute, 2–4 July, London, Chapter 14.

    Google Scholar 

  21. Dao, K.C. (1982) Mechanical properties of polypropylene/crosslink rubber blends. J. Appl. Polym. Sci. 27, 4799.

    Article  CAS  Google Scholar 

  22. Jang, B.Z., Uhlmann, D.R. and Vander Sande, J.B. (1984) Crystalline morphology of polypropylene and rubber modified polypropylene. J. Appl. Polym. Sci. 29, 4377.

    Article  CAS  Google Scholar 

  23. Martuscelli, E., Maglio, G., Paalumbo, R., Malinconico, M., Greco, R., Rogosta, G. and Sellitti, C. (1985) Rubber modification of polyamide 6: methods—properties—morphology relationships. Proc. Int. Conf. Toughening of Plastics-II. The Plastic and Rubber Institute, 2–4 July, London, Chapter 12.

    Google Scholar 

  24. Nadkarni, V.M., Shingankuli, V.L. and Jog, J.P. Blends of thermoplastic polyesters with amorphous polyamide 1. Thermal and crystallisation behaviour. Polym. Eng. Sci. 28, 1326.

    Google Scholar 

  25. Teh, J.W. and Rudin, A. (1991) Properties and morphology of polystyrene and linear low density polyethylene polyblend and polyalloy. Polym. Eng. Sci. 31, 1033.

    Article  CAS  Google Scholar 

  26. Fowler, M.W. and Baker, W.E. (1988) Rubber toughening of PS through reactive blending. Polym. Eng. Sci. 28, 1427.

    Article  CAS  Google Scholar 

  27. Akhtar, S. and White, J.L. (1991) Characteristics of binary and ternary blends of poly (p-phenylene sulfide) with poly(bisphenol A)sulfone and polyetherimide. Polym. Eng. Sci. 31, 84.

    Article  CAS  Google Scholar 

  28. Weiss, R.A., Huh, W. and Nicolais, L. (1987) Non-reinforced polymer based on blends of polystyrene and thermotropic liquid crystalline polymer. Polym. Eng. Sci. 27, 684.

    Article  CAS  Google Scholar 

  29. Isayev, A.I. and Modic, M.T.J. (1987) Polymer Composite 8, 158.

    Article  CAS  Google Scholar 

  30. Nobile, M.R., Amendola, E., Nicolais, L., Acierno, D. and Carfagne, C. (1989) Physical properties of blend of PC and LC copolyesters. Polym. Eng. Sci. 29, 244.

    Article  CAS  Google Scholar 

  31. Shin, B.Y. and Chung, I.J. (1990) Polymer blend containing a thermotropic polyester with long flexible spacer in the main chain. Polym. Eng. Sci. 30, 22.

    Article  CAS  Google Scholar 

  32. Isayev, A.I. and Subramanian (1992) Blends of a liquid crystalline polymer with polyether ether ketone. Polym. Eng. Sci. 32, 85.

    Article  CAS  Google Scholar 

  33. Bucknall, C.B. and Jones, D.P. (1982) Deformation and fracture of thermoplastic containing spherical particles: A comparison between rigid spheres and rubber particles. Proc. Int. Conf. Deformation, Yield and Fracture of Polymers. The Plastic and Rubber Institute, Cambridge, Chapter 27.

    Google Scholar 

  34. Chong, L.S., Mai, Y.W. and Cotterell, B. (1989) Impact fracture energy of mineral-filled polypropylene. Polym. Eng. Sci. 29, 505.

    Article  Google Scholar 

  35. Lee, H. and Neville, N. (1967) Handbook of Epoxy Resins, McGraw-Hill Inc.

    Google Scholar 

  36. Shimp, D.A. (1986) The translation of dicyanate structure and cyclotrimerization efficiency to polycyanurate properties. Polym. Mat. Sci. Eng., ACS meeting, New York, p. 107.

    Google Scholar 

  37. Landman, D. (1986) Advances in the chemistry and applications of BMI in Developments in Reinforced Plastics—5 Pritchard, G., ed., Elsevier Applied Science Publishers, London and New York, Chapter 2, p. 39.

    Chapter  Google Scholar 

  38. Gillham, J.K., Mcphersin, K.A. and Manzione, L.T. (1981) Rubber modified epoxies: I transition and morphology. J. Appl. Polym. Sci. 26 (3), 907.

    Article  Google Scholar 

  39. Bucknall, C.B. and Partridge, I.K. (1983) Phase separation in epoxy resins containing PES. Brit. Polym. J. 15, 71.

    Article  CAS  Google Scholar 

  40. Sultan, J.N., Laible, R.C. and McGarry, F.J. (1971) Microstructures of two phase polymers. Appt. Polym. Symposium 16, 127.

    Google Scholar 

  41. Sultan, J.N. and McGarry, F.J. (1969) Microstructural characteristics of toughened thermoset polymers. MIT School of Engineering Report R69-59.

    Google Scholar 

  42. Rowe, A.E., Siebert, A.R. and Drake, R.S. (1970) Toughening thermosets with liquid butadiene/acrylonitrile polymers. Modern Plastics 47, 110.

    CAS  Google Scholar 

  43. Siebert, A.R. and Riew, C.K. (1971) The chemistry of rubber toughened epoxy resins I. Proc. 161st ACS meeting, Organic Coatings and Plastics Division, Los Angeles, CA.

    Google Scholar 

  44. Riew, C.K., Rowe, E.A. and Siebert, A.R. (1976) Rubber toughened thermosets in Toughness and Brittleness of Plastic, Deanin, R.D. and Crugnola, A.C.S., eds, Adv. Chem. Ser. No. 154, Washington.

    Google Scholar 

  45. Bucknall, C.B. and Yoshii, T. (1978) Relationships between structure and mechanical properties in rubber toughened epoxy resins. Brit. Polym. J. 10, 53.

    Article  CAS  Google Scholar 

  46. Kunz-Douglass, S., Beaumont, P.W.R. and Ashby, M.F. (1980) A model for the toughness of epoxy-rubber particulate composites. J. Mat. Sci. 15, 1109.

    Article  CAS  Google Scholar 

  47. Bascom, W.D., Cottington, R.L., Jones, R.L. and Peyser, P. (1975) The fracture of epoxy and elastomer-modified epoxy polymers in bulk and as adhesives. J. Appl. Polym. Sci. 19, 2545.

    Article  CAS  Google Scholar 

  48. Kinloch, A.J., Shaw, S.J., Todd, D.A. and Hunston, D.L. (1983) Deformation and fracture behaviour of a rubber toughened epoxy. 1: Microstructures and fracture studies. Polymer 24, 1341.

    Article  CAS  Google Scholar 

  49. Yee, A.F. and Pearson, R.A. (1986) Toughening mechanisms in modified epoxies. Part 1: Mechanical studies. J. Mat. Sci. 21, 2462.

    Article  CAS  Google Scholar 

  50. Kirshenbaum, S.L. and Bell, J.P. (1985) Matrix viscoelasticity: controlling factor in rubber toughening epoxy resins. J. Appl. Polym. Sci. 30, 1985.

    Article  Google Scholar 

  51. Lee, W.H., Hodd, K.A. and Wright, W.W. (1985) The influence of crosslink density on the toughness of rubber modified epoxy resins. Proc. Int. Conf. Adhesives, Sealants and Encapsulant—1, Network Events Ltd, Plastic and Rubber Institute, London, p. 144.

    Google Scholar 

  52. Pocius, A.V. (1987) Third generation 2-part epoxy adhesives. 19th International SAMPE Tech. Conf., Oct 13–15, p. 312.

    Google Scholar 

  53. Lee, W.H. (1986) Elastomer modified epoxy resins (toughening of TGDDM-DDS epoxy) Ph.D Thesis, Brunel University of West London.

    Google Scholar 

  54. British Patent Application No. 8928181.

    Google Scholar 

  55. Yang, P.C., Woo, E.P., Bishop, M.T. and Pickelmaan, D.M. (1990) Rubber toughening of thermosets—A system approach. Polym. Mat. Sci. Eng. (preprints) 63, 315.

    CAS  Google Scholar 

  56. Shaw, S.J. and Kinloch, A.J. (1984) High temperature adhesives. Proc. Int. Adhesion Conf., The Plastics and Rubber Institute, Chapter 3.

    Google Scholar 

  57. Stanzenberger, H., Konig, P., Herzog, M. and Romer, W. (1987) Toughened bismaleimides: Concepts, achievements, directions. Proc. 19th Int. SAMPE Tech. Conf., October, Virginia, p. 372.

    Google Scholar 

  58. Hunston, D.L., Moulton, R.J., Johnston, N.J. and Bascom, W.D. (1987) Matrix resin effects in composite delamination: Mode 1 fracture aspects in Toughened Composites Johnston, N.J., ed., Symposium on Toughened Composite, ASTM. STP937, p. 74.

    Chapter  Google Scholar 

  59. Lee, W.H. (1989) The influence of neat resin properties in composites. Proc. 1st Japan Int. SAMPE symposium, Tokyo, Nov. 1989, p. 576.

    Google Scholar 

  60. Raghava, R.S. (1988) Development and characterisation of thermosetting-thermoplastic polymer blends for application in damage tolerence composites. J. Polym. Sci., Polym. Phys. 26, 65.

    Article  CAS  Google Scholar 

  61. Raghava, R.S. (1987) Role of matrix-particle interface adhesion on fracture toughness of dual phase epoxy-polyethersulfone blends. J. Polym. Sci., Polym. Phys. 25, 1017.

    Article  CAS  Google Scholar 

  62. Bucknall, C.B. and Gilbert, A.H. (1989) Toughening of tetrafunctional epoxy resins using polyetherimide. Polymer 30, 213.

    Article  CAS  Google Scholar 

  63. Hourston, D.J. and Lane, J.M. (1992) The toughening of epoxy resins with thermoplastics: 1. Trifunctional epoxy resin—polyetherimide blends. Polymer 33, 1379.

    Article  CAS  Google Scholar 

  64. Hedrick, J.L., Yilgor, I., Hedrick, J.C., Wilkes, G.L. and McGrath, J.E. (1985) Proc. 30th National SAMPE Symposium, Covina, California, March 19–21, p. 947.

    Google Scholar 

  65. Yamanaka, K. and Inoue, T. (1989) Structure development in epoxy resin modified with poly-(ether sulphone). Polymer 30, 662.

    Article  CAS  Google Scholar 

  66. Cecera, J.A. and McGrath, J.E. (1986) Morphology and properties of amine terminated poly(arylether ketone) and poly(arylether sulphone) modified epoxy resin systems. Polymer (preprints), 27, 299.

    Article  Google Scholar 

  67. Shimp, D.A., Christenson, J.R. and Ising, S.J. (1990) Cyanate Ester Resins—Chemistry, Properties and Applications. Hi-Tek Polymers, Inc., Louisville.

    Google Scholar 

  68. Cantwell, W.J. and Roulin-Moloney, A.C. (1989) Fractography and failure mechanism of unifilled and particulate filled epoxy resins in Fractography and Failure Mechanisms of Polymers Roulin-Moloney, A.C., ed., Elsevier Applied Science Publishers, Chapter 7, p. 244.

    Google Scholar 

  69. Spanoudakis, J. and Young, R.J. (1984) Crack propagation in a glass particle filled epoxy resin. Part 2: Effect of particle matrix adhesion. J. Mat. Sci. 19, 487.

    Article  CAS  Google Scholar 

  70. Kinloch, A.J., Maxwell, D.L. and Young, R.J. (1985) The fracture of hybrid-particulate composites. J. Mat. Sci. 20, 4169.

    Article  CAS  Google Scholar 

  71. Low, I.M., Mai, Y.W., Bandyopadhay, S. and Silva, V.M. (1987) in Proc. 1987 Australian Fracture Group Symposium. Mai, Y.W., ed., Sydney, Australia, p. 77.

    Google Scholar 

  72. Galbriath, S.T., McClusky, J., Orton, M.L. and Nield, E. (1985) Morphology and properties of interpenetrating network derived from polyurethane and polyethacrylates. Proc. Int. Conf. Toughening of Plastics—II. The plastics and Rubber Institute, July, London.

    Google Scholar 

  73. Hartness, J.T. (1985) A dicyanate semi-IPN (SIPn) matrix composite in Toughened Composites, Johnston, N.J., ed., STP 937, p. 453.

    Google Scholar 

  74. Sefton, M.S., McGrail, P.T., Peacock, J.A, Wilkinson, S.P., Crick, R.A., Davies, M. and Almen, G. (1987) Semi-interpenetrating polymer networks as a route to toughening of epoxy resin matrix composites, Lynch, T., Presh, J., Wolf, T. and Rupert, N., eds., Proc. 19th Int. SAMPE Tech. Conf. October 13–15, Virginia, p. 700.

    Google Scholar 

  75. Hanky, A.O. and St Clair, T.L. (1986) SAMPE J. 21, 40.

    Google Scholar 

  76. Pater, R.H. (1991) Interpenetrating polymer network approach to tough and microcracking resistance high temperature polymers. Part II, Larc-RP41. Polym. Eng. Sci. 31 (1), 20.

    Article  CAS  Google Scholar 

  77. Lee, W.H., Hodd, K.A. and Wright, W.W. (1992) Plastic deformation in rubber modified crosslink epoxy. J. Mat. Sci. 27, 4582.

    Article  CAS  Google Scholar 

  78. Sternstein, S.S. and Ongchin, L. (1969) Yield criteria for plastic deformation of glassy high polymer in general stress fields. ACS Polymer Preprints 10 (2) 1117.

    CAS  Google Scholar 

  79. Kambour, R.P. (1964) Structures and properties of crazes in polycarbonate and other glassy polymers. Polymer 5, 143.

    Article  CAS  Google Scholar 

  80. Bucknall, C.B. and Smith, R.R. (1965) Stress-whitening in high impact polystyrene. Polymer 6, 437.

    Article  CAS  Google Scholar 

  81. Bucknall, C.B., Clayton, D. and Keast, W.E. (1972) Rubber toughened plastics—Part 2: Creep mechanisms in HIPS/PPO. J. Mat. Sci. 7, 1443.

    Article  CAS  Google Scholar 

  82. Donald, A.M. and Kramer, E.J. (1982) The competition between shear deformation and crazing in glassy polymers. J. Mat. Sci. 17, 1871.

    Article  CAS  Google Scholar 

  83. Kambour, R.P. (1973) A review of crazing and fracture in thermoplastics. J. Polym. Sci., Macromolecular Reviews 7, 1.

    Article  Google Scholar 

  84. Donald, A.M. and Kramer, E.J. (1982) Interaction of crazes with pre-existing shear bands in glassy polymers. J. Mat. Sci. 17, 1739.

    Article  CAS  Google Scholar 

  85. Melander, A. and Staklberg, U. (1980) The effects of void size and distribution on ductile fracture. Int. J. Fracture 16, 431.

    Article  Google Scholar 

  86. Needleman, A (1972) Void growth in an elastic-plastic medium. J. Appl. Meek., Trans, ASME, 964.

    Google Scholar 

  87. Gurson, A.L. (1977) Continum theory of ductile rupture by void nucleation and growth. Part 1: Yield criteria and flow rules for porous ductile media, J. Eng. Mat. Tech., Trans., ASME, 99, 2.

    Article  Google Scholar 

  88. Yamamoto, H. (1978) Conditions for shear localisation in the ductile fracture of void containing materials. Int. J. Fracture 14, 347.

    Article  Google Scholar 

  89. Trevgaard, V. (1981) Influence of voids on shear band instabilities under plain strain conditions. Int. J. Fracture 17, 389.

    Article  Google Scholar 

  90. Hobbs, S.Y. (1977) Fracture toughness of PC structural foams. J. Appl. Phys. 48, 4052.

    Article  CAS  Google Scholar 

  91. Yee, A.F. (1977) The yield and deformation behaviour of some polycarbonate blends. J. Mat. Sci. 12, 757.

    Article  CAS  Google Scholar 

  92. Yee, A.F. and Kambour, R.P. (1978) Fracture toughness studies on rubber toughened polymers. Proc. Int. Conf. Toughening of Plastics, The Plastic and Rubber Institute, London.

    Google Scholar 

  93. Maxwell, M.A. and Yee, A.F. (1981) The effects of strain rate on the toughening mechanisms of rubber modified plastics. Polym. Eng. Sci. 21, 205.

    Article  CAS  Google Scholar 

  94. Boggreve, R.J.M., Gaymans, R.J. and Eichenwald, H.M. (1989) Impact behaviour of nylon-rubber blends. 6: Influence of structure on voiding processes, toughening mechanism. Polymer 30, 78.

    Article  Google Scholar 

  95. Gent, A.N. and Lindley, P.B. (1958) Internal rupture of bonded rubber cylinders in tension. Proc. Roy. Soc. A249, 195.

    Google Scholar 

  96. Huang, Y. and Kinloch, A.J. (1992) The toughness of epoxy polymers containing microvoids. Polymer 33 (6), 1330.

    Article  CAS  Google Scholar 

  97. Evans, A.G., Ahmad, Z.B., Gilbert, D.G. and Beaumont, P.W.R. (1985) Mechanisms of toughening in rubber toughened polymers. Proc. Int. Conf. Toughening of Plastics—II. The Plastic and Rubber Institute, 2—4 July, London, Chapter 16.

    Google Scholar 

  98. Lange, F.F. (1970) The interaction of a crack front with a second-phase dispersion. Phil. Mag. 22, 983.

    Article  CAS  Google Scholar 

  99. Evans, A.G. (1972) The strength of brittle materials containing second phase dispersions. Phil. Mag. 26, 1327.

    Article  CAS  Google Scholar 

  100. Green, D.J. (1979) Fracture of a brittle particulate composite. Part 2: Theorectical aspets. J. Mat. Sci. 14, 1657.

    Article  Google Scholar 

  101. Donald, A.M. and Kramer, E. (1982) Plastic deformation mechanisms in polyacylonitrile-butadiene styrene (ABS). J. Mat. Sci. 17, 1765.

    Article  CAS  Google Scholar 

  102. Dillon, M. and Bevis, M.J. (1982) The microstructure and deformation of model ABS compounds. Part 2: The effect of graft frequency and rubber particle size. J. Mat. Sci. 17, 1903.

    Article  CAS  Google Scholar 

  103. Sultan, J.N. and McGarry, F.J. (1973) Effect of rubber particle size on deformation mechanism in glassy epoxy. Polym. Sci. Eng. 13, 29.

    Article  CAS  Google Scholar 

  104. Bascom, W.D., Ting, R.Y., Moulton, R.J., Riew, C.K. and Siebert, A.R. The fracture of an epoxy polymer containing elastomeric modifiers. J. Mat. Sci. 16, 2657.

    Google Scholar 

  105. Bevis, M.J. and Allen, P.S. (1987) Multi-live-feed injection moulding. Plast. Rubb. Proc. Appln. 7, 3.

    Google Scholar 

  106. Ibrahim, A.M., Quinlivan, T.J. and Saferis, J.C. (1986) Processing of PES reinforced high performance epoxy blends. Polymer Preprints 27, 277.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lee, W.H. (1993). Toughened polymers. In: Folkes, M.J., Hope, P.S. (eds) Polymer Blends and Alloys. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2162-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2162-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4957-3

  • Online ISBN: 978-94-011-2162-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics