Skip to main content

Abstract

Many different approaches have been taken to combat fouling and concentration polarisation. These involve either modifying the hydrodynamics above the membrane surface, the properties of the membrane surface itself or the electrical forces acting between the solute and the membrane surface. This chapter reviews the first two methods and shows how they are used in practice. The first section considers the effects that hydrodynamic factors have on the performance of membrane filtration systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauser, H., Chmiel, H., Stroh, N. & Walitza, E. (1982). Interfacial effects with microfiltration membranes. J. Membr. Sci., 11, 321–32.

    Article  CAS  Google Scholar 

  • Bauser, H., Chmiel, H., Stroh, N. & Walitza, E. (1986). Control of concentration polarization and fouling in medical, food and biotechnical applications. J. Membr. Sci., 27, 195–202.

    Article  CAS  Google Scholar 

  • Bellhouse, B. J., Bellhouse, F. H., Curl, C. M., MacMillan, T. I., Gunning, A. J., Spratt, E. H., MacMurray, S. B. & Nelems, J. M. (1973). A high efficiency membrane oxygenator and pulsatile pumping system, and its application to animal trials. Trans. Am. Soc. Artif. Intern. Organs, 19, 72–9.

    Article  CAS  Google Scholar 

  • Blatt, W. F., Dravid, A., Michaels, A. S. & Nelsen, L. (1970). Solute polarization and cake formation in membrane ultrafiltration: causes, consequences and control techniques. In: Membrane Science and Technology, ed. J. E. Flinn, Plenum Press, New York, pp. 47–97.

    Chapter  Google Scholar 

  • Cadotte, J., Forester, R., Kim, M., Petersen, R. & Stocker, T. (1988). Nanofiltration membranes broaden the use of membrane separation technology. Desalination, 70, 77–88.

    Article  CAS  Google Scholar 

  • Colman, D. A. & Mitchell, W. S. (1990). Enhanced mass transfer for membrane processes. J. Chem. E. Symp. Ser., 118, 87–103.

    Google Scholar 

  • Copas, A. L. & Middleman, S. (1974). Use of convection promotion in the ultrafiltration of a gel-forming solute. Ind. Eng. Chem. Process Des. Dev., 13(2), 143–5.

    Article  CAS  Google Scholar 

  • Da Costa, A. R., Fane, A. G., Fell, C. J. D. & Franken, A. C. M. (1991). Optimal channel spacer design for ultrafiltration. J. Membr. Sci., 62(3) 275–91.

    Article  Google Scholar 

  • Dorrington, K. L., Ralph, M. E., Bellhouse, B. J., Gardez, J. P. & Sykes, M. K. (1985). Oxygen and CO2 transfer of a polypropylene dimpled membrane lung with variable secondary flows. J. Biomed. Eng., 7, 89–99.

    Article  CAS  Google Scholar 

  • Edwards, M. F. & Wilkinson, W. L. (1971). Review of potential applications of pulsating flow in pipes. Trans. Inst. Chem. Eng., 49, 85–93.

    Google Scholar 

  • Fane, A. G. & Fell, C. J. D. (1987). A review of fouling and fouling control in ultrafiltration. Desalination, 62, 117–36.

    Article  CAS  Google Scholar 

  • Fane, A. G., Fell, C. J. D. & Kim, K. J. (1985). The effect of surfactant pretreatment on the ultrafiltration of proteins. Desalination, 53, 37–55.

    Article  CAS  Google Scholar 

  • Finnigan, S. M. & Howell, J. A. (1989). The effect of pulsatile flow on ultrafiltration fluxes in a baffled tubular membrane system. Chem. Eng. Res. Des., 67(3), 278–82.

    CAS  Google Scholar 

  • Goel, V. & McCutchan, J. W. (1976). Colorado River desalting by reverse osmosis. Proceedings. 5th Int. Symp. Fresh Water from the Sea, Alghero, May 16–20, 4, 143–56.

    Google Scholar 

  • Hallström, B. & López-Leiva, M. (1978). Description of a rotating ultrafiltration module. Desalination, 24, 273–9.

    Article  Google Scholar 

  • Hashimoto, K. & Sumimoto, H. (1987). Condensation of aqueous solutions of proteins by their accelerated permeation through the new porous hydrophilic block copolymer membrane. Proceedings of the 1987 International Congress on Membranes and Membrane Processes, Tokyo, Japan, June 8–12, pp. 253–4.

    Google Scholar 

  • Hiddink, J., Kloosterboer, D. & Bruin, S. (1980). Evaluation of static mixers as convection promoters in the ultrafiltration of dairy liquids. Desalination, 35, 149–67.

    Article  Google Scholar 

  • Higuchi, A., Iwata, N., Tsubaki, M. & Nakagawa, T. (1988). Surface-modified polysulfone hollow fibers. J. Appl. Polym. Sci., 36, 1753–67.

    Article  CAS  Google Scholar 

  • Iwata, H. & Matsuda, T. (1988). Preparation and properties of novel environment-sensitive membranes prepared by graft polymerization onto a porous membrane. J. Membr. Sci., 38, 185–99.

    Article  CAS  Google Scholar 

  • Kim, K. J., Fane, A. G. & Fell, C. J. D. (1988). The performance of ultrafiltration membranes pretreated by polymers. Desalination, 70, 229–49.

    Article  CAS  Google Scholar 

  • Kim, K. J., Fane, A. G. & Fell, C. J. D. (1989). The effect of Langmuir-Blodgett layer pretreatment on the performance of ultrafiltration membranes. J. Membr. Sci., 43, 187–204.

    Article  CAS  Google Scholar 

  • Kimura, S., Ohtani, T. & Watanabe, A. (1985). Nature of dynamically formed ultrafiltration membranes, In: Reverse osmosis and ultrafiltration, ed. S. Sourirajan and T. Matsuura, ACS Symp. Ser. 281, American Chemical Society, Washington, D.C., pp. 35–46.

    Chapter  Google Scholar 

  • Lai, J. Y. & Chao, Y. C. (1988). Plasma treated nylon 4 membranes for reverse osmosis desalination, Proceedings IMTEC′88 International Membrane Technology Conference, 15–17 November, 1988, Sydney, J44–J47.

    Google Scholar 

  • Linder, C. & Shavit, R. (1988). Robust industrial intermediate RO/UF membranes for the concentration and desalting of low molecular weight organic solutions. Proceedings IMTEC′88 International Membrane Technology Conference, 15–17 November, Sydney, B49.

    Google Scholar 

  • Lowe, E. & Durkee, E. L. (1971). Dynamic turbulence promotion in reverse osmosis processing of liquid foods. J. Food Sci., 36, 31–2.

    Article  Google Scholar 

  • Mackley, M. (1987). Using oscillatory flows to improve performance. The Chem. Eng., 43, 18–20.

    Google Scholar 

  • Michaels, A. S., Robertson, C. R. & Reihanian, H. (1987). Mitigation of protein fouling of lipophilic ultrafiltration membranes by presorption of hydrophilic polymers. Proceedings of the 1987 International Congress on Membranes and Membrane Processes, Tokyo, Japan, June 8–12, pp. 17–19.

    Google Scholar 

  • Milisic, V. & Bersillon, J. L. (1986), Anti-fouling techniques in cross flow microfiltration. 4th World Filtration Congress, Ostend, April, 11.19–11.23.

    Google Scholar 

  • Miyama, H., Tanaka, K., Nosaka, Y., Fujii, N., Tanzawa, H. & Nagaoka, S. (1988). Charged ultrafiltration membrane for permeation of proteins. J. Appl. Polym. Sci., 36, 925–33.

    Article  CAS  Google Scholar 

  • Nakao, S., Osada, H., Kurata, H., Tsuru, T. & Kimura, S. (1988). Separation of proteins by charged ultrafiltration membranes. Desalination, 70, 191–205.

    Article  CAS  Google Scholar 

  • Neytzell-de Wilde, F. G., Buckley, C. A. & Cawdron, M. P. R. (1988). Dynamically formed hydrous zirconium (IV) oxide/polyacrylic membranes; Low pressure formation, high pressure evaluation. Desalination, 70, 121–36.

    Article  CAS  Google Scholar 

  • Nyström, M. (1990). Prevention of fouling by modification of UF membranes, Proceedings ICOM′90, Vol. 1, Chicago, pp. 90–2.

    Google Scholar 

  • Nyström, M. & Lindström, M. (1988). Optimal removal of chlorolignin by ultrafiltration achieved by pH control. Desalination, 70, 145–56.

    Article  Google Scholar 

  • Nyström, M., Lindström, M. & Matthiasson, E. (1989) Streaming potential as a tool in the characterization of ultrafilration membranes. Colloids Surf., 36, 297–312.

    Article  Google Scholar 

  • Nyström, M., Laatikainen, M., Turku, K. & Järvinen, P. (1990). Resistance to fouling accomplished by modification of ultrafiltration membranes. Progr. Colloid Polym. Sci., 82, 321–9.

    Article  Google Scholar 

  • Olivieri, V. P., Willingham, G. A., Vickers, J. C., McGahey, C., Kolega, M., Day, A., Johnson, W., Kopp, C. & Grohmann, G. S. (1991). Continuous microfiltration for the production of high quality wastewater effluent. IWEM Symposium on Advanced Sewage Treatment, London November.

    Google Scholar 

  • Osada, Y., Honda, K. & Ohta, M. (1986). Control of water permeability by mechanochemical contraction of poly(methacrylic acid)-grafted membranes. J. Membr. Sci., 27, 327–38.

    Article  CAS  Google Scholar 

  • Shimomura, T., Hirakawa, M., Murase, I., Sasaki, M. & Sano, T. (1984). Preparation of polyacrylonitrile reverse osmosis membrane by plasma treatment. J. Appl. Polym. Sci.: Appl. Polym. Symp., 38, 173–83.

    CAS  Google Scholar 

  • Sobey, I. J. (1980). On flow through furrowed channels. Part 1. Calculated flow patterns. J. Fluid. Mech., 96(1), 1–26.

    Article  Google Scholar 

  • Stephanoff, K. D., Sobey, I. J. & Bellhouse, B. J. (1980). On flow through furrowed channels. Part 2. Observed flow patterns. J. Fluid Mech., 96(1), 27–32.

    Article  Google Scholar 

  • Thomas, D. G. & Watson, J. S. (1968). Reduction of concentration polarization of dynamically formed hyperfiltration membranes by detached turbulence promoters. Ind. Eng. Chem. Process Des. Dev., 7(3), 397–401.

    Article  CAS  Google Scholar 

  • Tripodi, M. K., Hassett, R. J., Shaffer, A. F., Stimpson, D. I., Burke, J. J., Stedronsky, E. R. & Henis, J. M. (1988). Applications of surface modified membranes for protein purification. Proceedings IMTEC′88 International Membrane Technology Conference, 15–17 November, Sydney, A7–A10.

    Google Scholar 

  • Van der Waal, M. J., van der Velden, P. M., Koning, J., Smolders, C. A. & van Swaay, W. P. M. (1977). Use of fluidized beds as turbulence promoters in tubular membrane systems. Desalination, 22, 465–83.

    Article  Google Scholar 

  • Vigo, F. & Uliana, C. (1987). Ultrafiltration membranes obtained by grafting of hydrophilic monomers onto Polyvinylchloride. Proceedings of the 1987 International Congress on Membranes and Membrane Processes, Tokyo, Japan, June 8–12, pp. 275–6.

    Google Scholar 

  • Vigo, F. & Uliana, C. (1989). Ultrafiltration membranes obtained by grafting hydrophilic monomers onto poly(vinyl chloride). J. Appl. Polym. Sci., 38, 1197–209.

    Article  CAS  Google Scholar 

  • Vigo, F., Nicchia, M. & Uliana, C. (1988). Poly(vinyl chloride) ultrafiltration membranes modified by high frequency discharge treatment. J. Membr. Sci., 36, 187–99.

    Article  CAS  Google Scholar 

  • Vigo, F., Uliana, C. & Dondero, G. (1988). Ultrafiltration membranes obtained by poly(acrylonitrile) grafted onto poly(vinylchloride). Desalination, 70, 277–92.

    Article  CAS  Google Scholar 

  • Wahlgren, M., Sivik, B. & Nyström, M. (1990). Dextran modifications of polysulfone UF-membranes: Streaming potential and BSA fouling characteristics. Acta Polytech. Scand., Ch-series, 194, 1–18.

    Google Scholar 

  • Wolff, J., Steinhauser, H. & Ellinghorst, G. (1988). Tailoring of ultrafiltration membranes by plasma treatment and their application for the desalination and concentration of water-soluble organic substances. J. Membr. Sci., 36, 207–14.

    Article  CAS  Google Scholar 

  • Wyatt, J. M., Knowles, C. J. & Bellhouse, B. J. (1987). A novel membrane module for use in biotechnology that has high transmembrane flux rates and low fouling. Proceedings of International Conference on Bioreactors and Biotransformations, ed. G. W. Moody & P. B. Baker, Gleneagles, Scotland, pp. 166–172.

    Google Scholar 

  • Yan, W., Yang, P. & Wang, Y. (1988). UV-radiation grafting of acrylamide onto cellulose acetate reverse osmosis membrane. Shuichuli Jishu, 14(4), 213–8.

    CAS  Google Scholar 

  • Yokota, M. & Kawasaki, H. (1987). Hydrophilization of porous membranes by reactive sulfones, Ger. Offen. DE 3,835,612 (Cl. C08J7/12, 27 Apr 1989), JP Appl. 87/263,322, 19 Oct, 10 pp.

    Google Scholar 

  • Zeni, M., Bellobono, I. R., Muffato, F., Polissi, A., Selli, E. & Rastelli, E. (1988). Photosynthetic membranes. VI. Characterization of ultrafiltration membranes prepared by photografting zeolite-epoxy-diacrylate resin composites onto cellulose. J. Membr. Sci., 36, 277–95.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nyström, M., Howell, J.A. (1993). Flux Enhancement. In: Howell, J.A., Sanchez, V., Field, R.W. (eds) Membranes in Bioprocessing: Theory and Applications. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2156-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2156-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4954-2

  • Online ISBN: 978-94-011-2156-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics