Skip to main content

The photochemistry and function of carotenoids in photosynthesis

  • Chapter
Carotenoids in Photosynthesis

Abstract

In photosynthetic systems, carotenoids act as light-harvesting molecules and provide photoprotection of the plant and bacterial species (Cogdell and Frank 1987; Siefermann-Harms 1985). In many cases, themanner in which aparticular carotenoid functions depends on its photochemical properties. Carotenoids participate in an abundance of photochemical reactions including singlet-singlet energy transfer, triplet-triplet energy transfer, oxidation, reduction and isomerisation. Carotenoid molecules are capable of reporting information about the course of these reactions from readily observable changes in many of their molecular spectroscopic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agalidis, I., Lutz, M. and Reiss-Husson, F. (1980) Binding of carotenoids on reaction centres from Rhodopseudomonas sphaeroides R-26. Biochim. Biophys. Acta ,589:264–274.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J.P., Feher, G., Yeates, T.O. et al. (1988a) Structure of the reaction centre from Rhodobacter sphaeroides R-26 and 2.4.1. In: Breton, J. and Vermeglio, A. (eds.), The Photosynthetic Bacterial Reaction Centre. NATO ASI Series A: Life Sciences. Plenum, New York, pp.l49:5-ll,

    Google Scholar 

  • Allen, J. P., Feher, G., Yeates, T. O. et al. (1988b) Structure of the reaction centre from Rhodopseudomonassphaeroides R-26: Protein-cofactor (quinones and Fe2+) interactions. Proc. Natl Acad. Sci. USA ,85:8487–8491.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, P.O., Gillbro, T., Ferguson, L. and Cogdell, R.J.(1991) Absorption spectral shifts of carotenoids related to medium polarizability. Photochem. Photobiol. ,54:353–360.

    Article  CAS  Google Scholar 

  • Andersson, P.O., Gillbro, T., Asato, A.E. and Liu, R.S.H. (1992) Dual singlet-state emission in a series of mini-carotenes. J. Lumin. ,51:11–20.

    Article  CAS  Google Scholar 

  • Andrews, J. R. and Hudson, B.S. (1978) Environment effects on radiative rate constants with application to linear polyenes. J. Chem. Phys. ,68:4587–4594

    Article  CAS  Google Scholar 

  • Angerhofer, A., Cogdell, R.J. and Hipkins, M.F. (1986) A spectral characterization of the light-harvesting pigment-protein complexes from Rhodopseudomonas acidophila. Biochim. Biophys. Acta ,848:333–341.

    Article  CAS  Google Scholar 

  • Arnoux, B., Ducruix, A., Reiss-Husson, F., et al. (1989) Structure of spheroidene in the photosynthetic reaction centre from Rhodobacter sphaeroides. FEBS Lett. ,258:47–50.

    Article  PubMed  CAS  Google Scholar 

  • Aust, V., Angerhofer, A., Ullrich, J. et al. (1991) ADMR of carotenoid triplet states in bacterial photosynthetic antenna and reaction centre complexes. Chem. Phys. Lett. 181:213–221.

    Article  CAS  Google Scholar 

  • Barrow, G.M. (1973) Physical Chemistry ,3rd> Ed. McGraw Hill, New York.

    Google Scholar 

  • Bart, J.C.J. and MacGillavry, C.H. (1968a) The crystal and molecular structure of canthaxanthin. Acta Crystallogr. ,B24:1587–1606.

    Google Scholar 

  • Bart, J.C.J. and MacGillavry, C.H. (1968b) The crystal structure of 15,15’-dehydrocanthaxanthin. Acta Crystallogr. ,B24:1569–1586.

    Google Scholar 

  • Basu, S. (1964) Theory of solvent effects on molecular electronic spectra. Adv. Quantum Chem. ,1:145–169.

    Article  CAS  Google Scholar 

  • Beddard, G.S., Davidson, R.S. and Thethewey, K.R. (1977) Quenching of chlorophyll fluorescence by ß-carotene. Nature ,267:373–374.

    Article  CAS  Google Scholar 

  • Bensasson, R., Land, E.J. and Maudinas, B. (1976) Triplet states of carotenoids from photosynthetic bacteria studied by nanosecond ultraviolet and electron pulse irradiation. Photochem. Photobiol. ,23:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Birge, R.R. (1986) Two photon spectroscopy of protein-bound chromophores. Acc. Chem. Res. ,19:138–146.

    Article  CAS  Google Scholar 

  • Birge, R., Bennett, J.A., Fang, H.L.-B. and Leroi, G.E. (1978) The two photon spectroscopy of all -trans retinal and related polyenes. In: Zewail, A. H., (ed.), Springer Series in Chem. Phys. ,Vol. 3. Springer, Berlin, pp. 347–354.

    Google Scholar 

  • Blankenship, R.E., Trost, J.T. and Mancino, L.J. (1988) In Breton, J. and Vermeglio, A., (eds.)The Photosynthetic Bacterial Reaction Centre: Structure and Dynamics. New York: Plenum Press, pp. 119–127.

    Google Scholar 

  • Bolt, J.D., Hunter, C.N., Niederman, R.A. and Sauer, K. (1981) Linear and circular dichroism and fluorescence polarization of the B875 light-harvesting bacteriochlorophyll-protein complex from Rhodopseudomonas sphaeroides. Photochem. Photobiol. ,34:653–656.

    CAS  Google Scholar 

  • Bondarev, S. L., Bachilo, S. M., Dvornikov, S. S. and Tikhomirov, S. A. (1989) S2 → S0 fluorescence and transient Sn <-S1 absorption of all-trans-ß-carotene in solid and liquid solutions. J. Photochem. Photobiol. ,46A:315–322.

    Article  Google Scholar 

  • Borland, C.F., McGarvey, D.J., Truscott, T.G. et al. (1987) Photophysical studies of bacteriochlorophyll a and bacteriopheophytin a-singlet oxygen generation. J. Photochem. Photobiol. ,1B:93–101.

    Google Scholar 

  • Boucher, F. and Gingras, G. (1984) Spectral evidence for photo-induced isomerisation of carotenoids in bacterial photoreaction centre. Photochem. Photobiol. ,40:277–281.

    Article  CAS  Google Scholar 

  • Boucher, F., Rest, M. van der and Gingras, G. (1977) Structure and function of carotenoids in the photoreaction centre from Rhodospirillum rubrum. Biochim. Biophys. Acta, 461:339–357.

    Article  PubMed  CAS  Google Scholar 

  • Bouwman, W. G., Jones, A. C, Phillips, D. et al. (1990) Fluorescence of gaseous tetraenes and pentaenes. J. Phys. Chem. ,94:7429–7434.

    Article  CAS  Google Scholar 

  • Breton, J. (1985) Orientation of the chromophores in the reaction centre of Rhodopseudomonas viridis. Comparison of low temperature linear dichroism spectra with a model derived from X-ray crystallography. Biochim. Biophys. Acta ,810:235–245.

    Article  CAS  Google Scholar 

  • Breton, J. and Geacintov, N.E. (1979) Chlorophyll orientation and energy migration in the p/s membrane. Ciba Found. Symp. ,61:217–236.

    CAS  Google Scholar 

  • Breton, J. and Nabedryk, E. (1987) Pigment and protein organization in reaction centre and antenna complexes. In: Barber, J. (ed.), The Light Reactions. Elsevier Science Publishers, Amsterdam, pp. 159–195.

    Google Scholar 

  • Breton, J. and Verméglio, A. (1982) Orientation of photosynthetic pigments in vivo. In: Govindjee, (ed.), Photosynthesis. Energy Conversion by Plants and Bacteria. Vol 1. Academic Press, New York, pp. 153–194.

    Google Scholar 

  • Burkey, T.J., Majewski, M. and Griller, D. (1986) Heats of formation of radicals and molecules by a photoacoustic technique. J. Am. Chem. Soc. ,108:2218–2221.

    Article  PubMed  CAS  Google Scholar 

  • Carrington, A. and McLachlan, A.D. (1967) Introduction to Magnetic Resonance. Harper and Row, New York.

    Google Scholar 

  • Chachety, C., Gust, D., Moore, T.A. et al. (1984) NMR spectra of carotenoporphyrins. Computer assisted conformationa analysis. Org. Mag. Res. ,22: 39–45.

    Article  Google Scholar 

  • Chadwick, B.W. and Frank, H.A. (1986) Electron-spin resonance studies of carotenoids incorporated into reaction centres of Rhodobacter sphaeroides R-26.1. Biochim. Biophys. Acta ,851:257– 266.

    Article  CAS  Google Scholar 

  • Chadwick, B.W., Zhang, C, Cogdell, R.J. and Frank, H.A. (1987) The effects of lithium dodecyl sulfate and sodium borohydride on the absorption spectrum of the B 800–850 light harvesting complex from Rhodopseudomonas acidophilall50. Biochim. Biophys. Acta ,893:444–457.

    Article  CAS  Google Scholar 

  • Chance, B. (1938) Oxygen-linked absorbancy changes in photosynthetic cells. Brookhaven Symp. Biol ,11: 74–86.

    Google Scholar 

  • Chance, B. and Smith, L. (1955) Respiratory pigments of Rhodospirillum rubrum. Nature, 175:803–806.

    Article  PubMed  CAS  Google Scholar 

  • Chantrell, S.J., McAuliffe, C.A., Munn, R.W. et al. (1977) Excited states of protoporphyrin IX dimethyl ester: Reaction of the triplet with carotenoids. J. Chem. Soc. Farad. Trans. I 73:858–865.

    Article  CAS  Google Scholar 

  • Chauvet, J.-P., Viovy, R., Land, E.J. et al. (1979) One-electron oxidation of carotene and electron transfers involving carotene cations and chlorophyll pigments in micelles, J. Phys. Chem. ,87:592–601.

    Article  Google Scholar 

  • Claes, H. (1960) Interaction between chlorophyll and carotenes with different chromophoric groups. Biochem. Biophys. Res. Commun. ,3:585–590.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, R.H. (1982) Triplet State ODMR Spectroscopy. John Wiley and Sons, New York.

    Google Scholar 

  • Clarke, R.H. and Frank, H.A. (1976) Triplet state radiationless transitions in polycyclic hydrocarbons. J. Chem. Phys. ,65:39–47.

    Article  CAS  Google Scholar 

  • Cogdell, R.J. and Frank, H.A. (1987) How carotenoids function in photosynthetic bacteria. Biochim. Biophys. Acta ,895:63–79.

    Article  PubMed  CAS  Google Scholar 

  • Cogdell, R.J. and Scheer, H. (1985) Circular dichroism of light-harvesting complexes from purple photosynthetic bacteria. Photochem. Photobiol. ,42:669–678.

    Article  CAS  Google Scholar 

  • Cogdell, R.J. and Thornber, J.P. (1980) Light-harvesting pigment-protein complexes of purple photosynthetic bacteria. FEBS Lett. ,122:1–8.

    Article  CAS  Google Scholar 

  • Cogdell, R.J., Monger, T.G., and Parson, W.W. (1975) Carotenoid triplet states in reaction centres from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim. Biophys. Acta ,408:189–199.

    Article  PubMed  CAS  Google Scholar 

  • Cogdell, R.J., Parson, W.W., and Kerr, M.A. (1976) The type, amount, location, and energy transfer properties of the carotenoid in reaction centres from Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta ,430:83–93.

    Article  PubMed  CAS  Google Scholar 

  • Cogdell, R.J., Celis, S., Celis, H. and Crofts, A.R. (1977) Reaction centre carotenoid band shifts. FEBSLett. ,80:190–193.

    Article  CAS  Google Scholar 

  • Cogdell, R.J., Hipkins, M.F., MacDonald, W. and Truscott, T.G. (1981) Energy transfer between the carotenoid and bacteriochlorophyll within the B 800–850 light-harvesting pigment-protein complex of Rps. sphaeroides. Biochim. Biophys. Acta ,634:191–202.

    Article  PubMed  CAS  Google Scholar 

  • Cogdell, R.J., Land, E.J. and Truscott, T.G. (1983) The triplet extinction coefficients of some bacterial carotenoids. Photochem. Photobiol. ,38: 723–725.

    Article  CAS  Google Scholar 

  • Cogdell, R.J., Andersson, P.O. and Gillbro, T. (1992) Carotenoid singlet-states and their involvement in photosynthetic light-harvesting. J. Photochem. Photobiol. B15:105–112.

    Google Scholar 

  • Cosgrove, S.A., Guite, M.A., Burnell, T.B. and Christensen, R.L. (1990) Electron relaxation in long polyenes. J. Phys. Chem. ,94:8118–8124.

    Article  CAS  Google Scholar 

  • D’Amico, K.L., Manos, C. and Christensen, R.L. (1980) Electronic energy levels in a homologous series of unsubstituted linear polyenes. J. Am. Chem. Soc. ,102:1777–1782.

    Article  Google Scholar 

  • Dallinger, R.F., Guanci, J.J., Woodruff, W.H. and Rodgers, M.A. (1979) Vibrational spectroscopy of the electronically excited state: pulse radiolysis/time-resolved resonance Raman study of triplet ß-carotene. J. Am. Chem. Soc. ,101:1355–1357.

    Article  CAS  Google Scholar 

  • Dallinger, R.F., Farquharson, S., Woodruff, W.H. and Rodgers, M.A. (1981a) Vibrational spectroscopy of the electronically excited state. 4. Nanosecond and picosecond time-resolved resonance Raman spectroscopy of carotenoid excited states. J. Am. Chem. Soc., 103:7433–7440.

    Article  CAS  Google Scholar 

  • Dallinger, R.F., Woodruff, W.H. and Rodgers, M.A. (1981b) The lifetime of the excited singlet-state of ß-carotene: Consequences to photosynthetic light harvesting. Photochem. Photobiol ,33:275–277.

    Article  CAS  Google Scholar 

  • Davidson, E. and Cogdell, R.J. (1981) Reconstitution of carotenoids in to the light-harvesting pigment-protein complex from the carotenoidless mutant of Rhodopseudomonas sphaeroides R-26. Biochim. Biophys. Acta ,635:295–303.

    Article  PubMed  CAS  Google Scholar 

  • DeCoster, B., Christensen, R. L., Gebhard, R. et al. (1992) Low-lying electronic states of carotenoids. Biochim. Biophys. Acta ,1102:107–114.

    Article  PubMed  CAS  Google Scholar 

  • DeGroot, H., Gebhard, R., van der Hoef, K. et al. (1990) The structure of the carotenoid in reaction centres of photosynthetic bacteria: A solid-state magic-angle sample spinning NMR investigation of spheroidene reconstituted into Rhodobacter sphaeroides R-2. Biophys. 7., 57:567a.

    Google Scholar 

  • Deisenhofer, J. and Michel, H. (1988) The crystal structure of the photosynthetic reaction centre from Rhodopseudomonas viridis. In: J. Breton and Vermeglio, A. (eds.), The Photosynthetic Bacterial Reaction Centre ,NATO ASI Series A: Life Sciences. Plenum, New York, 149:1–3.

    Google Scholar 

  • Deisenhofer, J. and Michel, H. (1989a) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas viridis. Science ,245:1463–1473.

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer, J. and Michel H. (1989b) The photosynthetic reaction centre from the purple bacterium Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Chemica Scripta ,29:205–220.

    CAS  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K. et al. (1984) X-Ray structure analysis of a membrane protein complex. Electron density map at 3 angstrom resolution and a model of the chromophores of the photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. ,180:385–398.

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer, J., Epp, O., Miki, K. et al. (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 angstrom, resolution. Nature ,318:618–624.

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams, B. (1990) Carotenoids and photoprotecüon in plants: A role for the xanthophyll zeaxanthin. Biochim. Biophys. Acta ,1020:1–24.

    Article  CAS  Google Scholar 

  • Demmig-Adams, B., Winter, K., Kruger, A. and Czygan, F.-C. (1989) Zeaxanthin and the heat dissipation of excess light energy in Nerium oleander exposed to a combination of high light and water stress. Plant Physiol ,87:17–24.

    Article  Google Scholar 

  • Dexter, D.L. (1953) A theory of sensitised luminescence in solids. J. Chem. Phys. ,21:836– 860.

    Article  CAS  Google Scholar 

  • Ditson, S.L., Davis, R.C. and Pearlstein, R.M. (1984) Relative enrichment of P-870 in photosynthetic reaction centres treated with sodium borohydride. Biochim. Biophys. Ada ,766:623–629.

    Article  CAS  Google Scholar 

  • Dorssen, R.J. van, Breton, J., Plijter, J.J. et al. (1987) Spectroscopic properties of the reaction centre and of the 47kDa chlorophyll protein of photosystem II. Biochim. Biophys. Acta, 893:267–274.

    Article  Google Scholar 

  • Duysens, L.N.M. (1954) Reversible changes in the absorption spectrum of Chlorella upon irradiation. Science ,120:353–354.

    Article  PubMed  CAS  Google Scholar 

  • Evans, D.F. (1960) Magnetic perturbation of single-triplet transitions. Part IV. Unsaturated compounds.7. Chem. Soc ,1960:1735–1745.

    Google Scholar 

  • Evans, D.F. (1961) Magnetic perturbation of singlet-triplet transitions. Part VI. Octa-1,3,5,7-tetraene.7. Chem. Soc. ,1961:2566–2569.

    Article  Google Scholar 

  • Evans, M.B., Cogdell, R.J., and Britton, G. (1988) Determination of the bacteriochlorophyll: carotenoid ratios of theB890 antenna complex of Rhodospirillum rubrum and the B800-850 complex of Rhodobacter sphaeroides. Biochim. Biophys. Acta ,935:292–298.

    Article  CAS  Google Scholar 

  • Feher, G., Allen, J.P., Okamura, M.Y. and Rees, D.C. (1989) Structure and function of bacterial photosynthetic reaction centres. Nature ,339:111–116.

    Article  CAS  Google Scholar 

  • Foote,C.S. (1968a) Photosensitized oxygenations and the role of singlet O2. Acc. Chem. Res., 1:104–110.

    Article  CAS  Google Scholar 

  • Foote, C.S. (1968b) Mechanisms of photosensitized oxidation. Science ,162:963–970.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C.S. (1976) In: Pryor, W.A. (ed.), Free Radicals and Biological Systems. Academic Press, New York, pp. 85–133.

    Google Scholar 

  • Foote, C.S., Chang, Y.C. and Denny, R.W. (1970a) Chemistry of singlet oxygen. XI. cis-trans isomerisation of carotenoids by singlet oxygen and aprobable quenching mechanism. J. Am. Chem. Soc. ,92:5218–5219.

    Article  PubMed  CAS  Google Scholar 

  • Foote, C. S., Chang, Y. C. and Denny, R. W. (1970b) Chemistry of singlet oxygen. X. Carotenoid quenching parallels biological protection. J. Am. Chem. Soc ,92:5216–5218.

    Article  PubMed  CAS  Google Scholar 

  • Förster, Th. (1948) Intermolecular energy transfer and fluorescence. Ann. Phys. ,2:55–75.

    Article  Google Scholar 

  • Förster, Th. (1965) In: Sinanoglu, O. (ed.), Modern Quantum Chemistry ,Part IE: Action of light and organic crystals. Academic Press, New York, pp. 93–137.

    Google Scholar 

  • Förster, Th. (1968) Intermolecular energy transfer and fluorescence. Ann. Physik. Leipzig, 2:55–75.

    Google Scholar 

  • Frank, H.A. (1992) Electron paramagnetic resonance studies of carotenoids. Methods Enzymoi ,213:305–312.

    Article  CAS  Google Scholar 

  • Frank, H.A. (1993) Carotenoids in photosynthetic bacterial reaction centres: Structure, spectroscopy and photochemistry. In: Norris, J. R. and Deisenhofer, J. (eds.), The Photosynthetic Reaction Centre. (In press).

    Google Scholar 

  • Frank, H.A. and Violette, C.A. (1989) Monomeric bacteriochlorophyll is required for triplet energy transfer between the primary donor and the carotenoid in photosynthetic bacterial reaction centres. Biochim. Biophys. Ada ,976:222– 232.

    Article  CAS  Google Scholar 

  • Frank, H.A., McLean, M.B. and Sauer, K. (1979) Triplet states in photosystem I of spinach chloroplasts and subchloroplast particles. Proc. Natl. Acad. Sci. USA ,76:5124–5128.

    Article  PubMed  CAS  Google Scholar 

  • Frank, H.A., Bolt, J.D., De B. Costa, S.M. and Sauer, K. (1980) Electron paramagnetic resonance detection of carotenoid triplet states. J. Am. Chem. Soc ,102:4893–4898.

    Article  CAS  Google Scholar 

  • Frank, H.A., Machnicki, J. and Felber, M. (1982) Carotenoid triplet states in photosynthetic bacteria. Photochem. Photobiol. ,35:713–718.

    Article  CAS  Google Scholar 

  • Frank, H.A., Machnicki, J. and Friesner, R. (1983) Energy transfer between the primary donor bacterio-chlorophyll and carotenoids in Rhodopseudomonas sphaeroides. Photochem. Photobiol. ,38:451–456.

    Article  CAS  Google Scholar 

  • Frank, H.A., Machnicki, J. and Toppo, P. (1984) The orientation of the principal magnetic axes of the carotenoid in Rhodopseudomonas sphaeroides wild type. Photochem. Photobiol. ,39:429–432.

    Article  CAS  Google Scholar 

  • Frank, H.A., Chadwick, B.W., Taremi, S. et al. (1986) Singlet and triplet absorption spectra of carotenoids bound in the reaction centres of Rhodopseudomonas sphaeroides R-26. FEES Lett. ,203:157–163.

    Article  CAS  Google Scholar 

  • Frank, H.A., Chadwick, B.W., Oh, J.J. et al. (1987a) Triplet-triplet energy transfer in B80O-850 light-harvesting complexes of photosynthetic bacteria and synthetic carotenoporphyrin molecules investigated by electron spin resonance. Biochim. Biophys. Acta ,892:253– 263.

    Article  CAS  Google Scholar 

  • Frank, H.A., Taremi, S.S. and Knox, J.R. (1987b) Crystallization and preliminary X-ray and optical spectroscopic characterization of the photochemical reaction centre from Rhodobacter sphaeroides strain 2.4.1. J. Mol. Biol. ,198:139–141.

    Article  PubMed  CAS  Google Scholar 

  • Frank, H.A., Violette, C.A., Taremi, S.S. andBudil, D. (1989a) Linear dichroism of single crystals of the reaction centre from Rhodobacter sphaeroides wild type strain 2.4.1. Photosynth. Res. ,21:107–116.

    CAS  Google Scholar 

  • Frank, H.A., Hansson, Ö. and Mathis, P. (1989b) Electron paramagnetic resonance and optical changes of the photosystem II reaction centre complex produced by low temperature illumination. Photosynth. Res. ,20:279–289.

    CAS  Google Scholar 

  • Frank, H.A., Aldema, M.A., Violette, C.A. and Parot, P.H. (1991a) Low temperature polarised absorption microspectroscopy of single crystals of the reaction centre from Rhodobacter sphaeroides wild type strain 2.4.1. Photochem. Photobiol. ,54:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Frick, J., Von Schütz, J.U., Wolf, H.C. and Kothe, G. (1990) First detection of the (nonphosphorescent) triplet state in single crystals of ß-carotene. Mol. Cryst. Liq. Cryst., 183:269–272.

    CAS  Google Scholar 

  • Fujiwara, M., Hayashi, H., Tasumi, M. et al. (1987) Structural studies on a Photosystem II reaction centre complex consisting of D-l and D-2 polypeptides and cytochrome b-559 by resonance Raman spectroscopy and high-performance liquid chromatography. Chem Letts. 1987:2005–2008.

    Article  Google Scholar 

  • Gagliano, A.G., Breton, J. and Geacintov, N.E. (1986) Electric linear dichroism of chromatophores, pigment-protein and reaction centre complexes derived from Rhodopseudomonas sphaeroides. Photobiochem. Photobiophys. ,10:213–221.

    CAS  Google Scholar 

  • Gebhard, R., Hoef, K. van der, Violette, C.A. et al. (1991) 13C MAS NMR evidence for a 15,15 ’-Z configuration of the spheroidene chromophore in the Rhodobacter sphaeroides reaction centre. PureAppl. Chem. ,63:115–122.

    Article  CAS  Google Scholar 

  • Ghanotakis, D. F., dePaula, J. C., Demetriou, D. M. et al. (1989) Isolation and characterization of the 47 kDa protein and the D1-D2 cytochrome b-559 complex. Biochim. Biophys. Acta, 974:44–53.

    Article  PubMed  CAS  Google Scholar 

  • Gillbro, T. and Cogdell, R. J. (1989) Carotenoid fluorescence. Chem. Phys. Lett. ,158:312– 316.

    Article  CAS  Google Scholar 

  • Gillbro, T., Cogdell, R. and Sundström, V. (1988) Energy transfer from carotenoid to bacteriochlorophyll a in the B800–820 antenna complexes from Rhodopseudomonas acidophila strain 7050. FEBS Lett. ,235:169–172.

    Article  CAS  Google Scholar 

  • Goodwin, T. W., Land, D. G. and Sissins, M. E. (1956) Studies in carotenogenesis. 23. The nature of the carotenoids in the photosynthetic bactenumRhodopseudomonas sphaeroides (Athiorhodaceae). Biochem. J. ,64:486–492.

    PubMed  CAS  Google Scholar 

  • Gottfried, D.S., Steffen, M.A. and Boxer, S.G. (1991a) Stark effect spectroscopy of carotenoids in photosynthetic antenna and reaction centre complexes. Biochim. Biophys. Acta ,1059:76–90.

    Article  PubMed  CAS  Google Scholar 

  • Gottfried, D.S., Steffen, M.A. and Boxer, S.G. (1991b) Large protein-induced dipoles for a symmetric carotenoid in a photosynthetic antenna complex. Science ,251:662–665.

    Article  PubMed  CAS  Google Scholar 

  • Grant, J.L., Kramer, V.J., Ding, R. and Kispert, L.D. (1988) Carotenoid cation radicals: Electrochemical, optical and EPR study. J. Am. Chem. Soc. ,110:2151–2157.

    Article  CAS  Google Scholar 

  • Granville, M.F., Holtom, G.A. and Kohler, B.E. (1979) Experimental confirmation of the dipole forbidden character of the lowest excited singlet-state in 1,3,5,7-octatetraene. J. Chem. Phys. ,70:593–594.

    Article  CAS  Google Scholar 

  • Griffiths, M., Sistrom, W.R., Cohen-Bazire, G. and Stanier, R.Y. (1955) Functions of carotenoids in photosynthesis. Nature ,176:1211–1214

    Article  PubMed  CAS  Google Scholar 

  • Grondelle, R. van (1985) Excitation energy transfer, trapping and annihilation in photosynthetic systems. Biochim. Biophys. Acta ,811:147–195.

    Article  Google Scholar 

  • Grondelle, R. van, Kramer, H. J.M. and Rijgersberg, C.P. (1982) Energy transfer in the B800-850 carotenoid light-harvesting complex of various mutants of Rhodopseudomonas sphaeroides and of Rhodopseudomonas capsulata. Biochim. Biophys. Acta ,682:208– 215.

    Article  Google Scholar 

  • Gust, D. and Moore, T.A. (1991) Mimicking photosynthetic electron and energy transfer. In: Volman, D., Hammond, G., and Neckers, D. (eds.), Advances in Photochemistry ,Vol. 16. John Wiley & Sons, New York, pp. 1–63.

    Chapter  Google Scholar 

  • Haley, L.V. and Koningstein, J.A. (1983) Space and time-resolved resonance-enhanced vibrational Raman spectroscopy from femtosecond-lived singlet excited state of ß-carotene. Chem. Phys. ,77:1–9.

    Article  CAS  Google Scholar 

  • Hammond, G.S., Saltiel, J., Lamola, A.A. et al. (1964) Mechanisms of photochemical reactions in solution. XXII. Photochemical cis-trans isomerisation. J. Am. Chem. Soc, 86:3197–3217.

    Article  CAS  Google Scholar 

  • Hashimoto, H. and Koyama, Y. (1990) The 2-Ag-state of a carotenoid bound to spinach chloroplasts as revealed by picosecond transient Raman spectroscopy. Biochem. Biophys. Acta ,1017:181–186.

    Article  CAS  Google Scholar 

  • Hashimoto, H., Koyama, Y.,Ichimura, K. and Kobayashi, T. (1989) Time-resolved absorption spectroscopy of the triplet state produced from the all-trans, 7-cis, 9-cis, 13-cis ,and 15-cis isomers of ß-carotene. Chem. Phys. Lett. ,162:517–522.

    Article  CAS  Google Scholar 

  • Hayashi, H., Noguchi, T. and Tasumi, M. (1989) Studies on the interrelationship among the intensity of a Raman marker band of carotenoids, polyene chain structure, and efficiency of the energy transfer from carotenoids to bacteriochlorophyll in photosynthetic bacteria. Photochem. Photobiol. ,49:337–343.

    Article  CAS  Google Scholar 

  • Hoff, A. J. (1979) Application of ESR in photosynthesis. Phys. Rep., 54:75–200.

    Article  CAS  Google Scholar 

  • Holten, D., Windsor, M.W., Parson, W.W. and Thornber, J.P. (1978) Primary photochemical processes in isolated reaction centres of Rhodopseudomonas viridis. Biochim. Biophys. Acta ,501:112–126.

    Article  PubMed  CAS  Google Scholar 

  • Hudson, B.S. and Kohler, B.E. (1974) Linear polyene electronic structure and spectroscopy. Annu. Rev. Phys. Chem. ,25:437–460.

    Article  CAS  Google Scholar 

  • Hudson, B.S., Kohler, B.E. and Shulten, K. (1982) Linear polyene electronic structure and potential surfaces. In: Lim, E. C., (ed.), Excited States ,Vol. 6. Academic Press, New York, pp. 22–95.

    Google Scholar 

  • Iwata, K., Hayashi, H. and Tasumi, M. (1985) Resonance Raman studies of the conformations of all-trans carotenoids in light-harvesting systems of photosynthetic bacteria. Biochim. Biophys. Acta ,810:269–273.

    Article  CAS  Google Scholar 

  • Jackson, J.B. and Crofts, A.R. (1969) The high energy state in chromatophores from Rps. sphaeroides. FEBS Lett. ,4:185–189.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, J.B. and Dutton, P.L. (1973) The kinetic and redox potentiometric resolution of the carotenoid shifts inRps. sphaeroides chromatophores: their relationship to electric field alterations in electron transport. Biochim. Biophys. Acta ,325:102–113.

    Article  PubMed  CAS  Google Scholar 

  • Jensen, N.-H., Wilbrandt, R., Pagsberg, P.B. et al. (1980) Time resolved resonance Raman spectroscopy: The excited triplet state of all-trans-beta-carotene. J. Am. Chem. Soc., 102:7441–7444.

    Article  CAS  Google Scholar 

  • Jensen, N.-H., Nielsen, A.B. and Wilbrandt, R. (1982) Chlorophyll a-sensitized trans-cis photoisomerisation of all-trans-ß-carotene. J. Am. Chem. Soc. ,104:6117–6119.

    Article  CAS  Google Scholar 

  • Kakitani, T., Honig, B. and Crofts, A.R. (1982) Theoretical studies of the electrochemic response of carotenoids in photosynthetic membranes. Biophys. J. ,39:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Katoh, T., Nagashima, U. and Mimuro, M. (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: Implication for energy transfer in photosynthetic systems. Photosyn. Res. ,27:221–226.

    CAS  Google Scholar 

  • Kingma, H. (1983) Redox states of the reaction centre in relation to energy transfer and mechanism of carotenoid triplet formation in photosynthetic bacteria. Ph.D. Thesis, University of Leiden.

    Google Scholar 

  • Kirmaier, C. and Holten, D. (1987) Primary photochemistry of reaction centres from the photosynthetic purple bacteria. Photosynth. Res. ,13:225–260.

    Article  CAS  Google Scholar 

  • Kito, M., Yamashita, J. and Koyama, Y. (1983) Configurations of the carotenoid in carotenoproteins fromRhodospirillum rubrum. Aresonance Raman study. Photobiochem. Photobiophys. ,5:209–217.

    CAS  Google Scholar 

  • Knoop, F.W.E. and Oosterhoff, L.J. (1973) Low-energy electron impact excitation of 1,3,5-trans-hexatriene. Chem. Phys. Lett. ,22:247–248.

    Article  CAS  Google Scholar 

  • Kohler, B.E. (1991) Electronic properties of linear polyenes. In: Bredas, J. L. and Silbey, R. (eds.), Conjugated polymers: The Novel Science and Technology of Conducting and Non-linear Optically Active Materials. Kluwer Academic Publishers, Dodrecht.

    Google Scholar 

  • Kolaczkowski, S.V. (1989) On the mechanism of triplet energy transfer from the primary donor to spheroidene in photosynthetic reaction centres from Rhodobacter sphaeroides 2AA. Ph.D. Thesis, Brown University.

    Google Scholar 

  • Komiya, H., Yeates, T.O., Rees, D.C. et al. (1988) Structure of the reaction centre from Rhodopseudomonas sphaeroides R-26 and 2.4.1: Symmetry relations and sequence comparisons between different species. Proc. Natl. Acad. Sci. USA. ,85:9012–9016.

    Article  PubMed  CAS  Google Scholar 

  • Koyama, Y. (1991) Structures and functions of carotenoids in photosynthetic systems. J. Photochem. Photobiol. ,9B:265–280.

    Google Scholar 

  • Koyama, Y., Kito, M, Takii, T. et al. (1982) Configuration of the carotenoid in the reaction centres of photosynthetic bacteria. Comparison of the resonance Raman spectrum of the reaction centre of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of beta-carotene. Biochim. Biophys. Acta ,680:109–118.

    Article  CAS  Google Scholar 

  • Koyama, Y., Takii, T., Saiki, K. and Tsukida, K. (1983) Configuration of the carotenoid in the reaction centres of photosynthetic bacteria-2. Comparison of the resonance Raman lines of the reaction centres with those of 14 different cis-trans isomers of ß-carotene. Photobiochem. Photobiophys., 5:139–150.

    CAS  Google Scholar 

  • Koyama, Y., Takatsuka, I., Kanaji, M. et al. (1990) Configurations of carotenoids in the reaction centre and the light-harvesting complex of Rhodospirillum rubrum Natural selection of carotenoid configurations by pigment-protein complexes. Photochem. Photobiol ,51:119–128.

    Article  CAS  Google Scholar 

  • Kramer, H.J.M., Grondelle, R. van , Hunter, C.N. et al. (1984) Pigment organization of the B800–850 antenna complex of Rhodopseudomonas sphaeroides. Biochim. Biophys. Acta ,765:156–165.

    Article  CAS  Google Scholar 

  • Krasnovskii, A.A., Lebedev, N.N. and Litvin, F.F. (1974) Spectral characteristics of phosphorescence of chlorophylls and pheophytins a and b. Dokl. Akad. Nauk SSSR, 216:1406–1409.

    PubMed  CAS  Google Scholar 

  • Krinsky, N.I. (1966) In: Goodwin, T.W. (ed.), Biochemistry of Chloroplasts. Academic Press, New York, pp. 423–430.

    Google Scholar 

  • Krinsky, N.I. (1968) The protective function of carotenoid pigments. In: Giese, A.C. (ed.), Photophysiology ,Vol. HI. Academic Press, New York, pp. 123–195.

    Google Scholar 

  • Krinsky, N.I. (1971) Function. In: Isler, O. (ed.), Carotenoids. Birkhäuser Verlag, Basel, pp. 669–716.

    Google Scholar 

  • Krinsky, N.I. (1978) Non-photosynthetic function of carotenoids. Phil. Trans. Roy. Soc., B284:581–590.

    Google Scholar 

  • Kuki, M., Hashimoto, H and Koyama, Y. (1990) The 21Ag -state of a carotenoid bound to the chromatophore membrane of Rhodobacter sphaeroides 2.4.1 as revealed by transient resonance Raman spectroscopy. Chem. Phys. Lett. ,165:417–422.

    Article  CAS  Google Scholar 

  • Lafferty, J., Land, E.J. and Truscott, T.G. (1978) Electron-transfer reactions involving chlorophyll a and carotenoids. J. Chem. Soc. Faraday I ,74:2760–2762.

    Article  CAS  Google Scholar 

  • Land, E.J., Sykes, A. and Truscott, T.G. (1971) The in vitro photochemistry of biological molecules-II. The triplet states of ß-carotene and lycopene excited by pulse radiolysis. Photochem. Photobiol. ,13:311–320.

    Article  CAS  Google Scholar 

  • LeRosen, A.L. and Reid, C.E. (1952) An investigation of certain solvent effects in absorption spectra. J. Chem. Phys. ,20:233–236.

    Article  CAS  Google Scholar 

  • Liaaen-Jensen, S. and Jensen, A. (1971) Quantitative determination of carotenoids in photosynthetic tissues. Meth. Enzymol. ,23:586–602.

    Article  Google Scholar 

  • Liptay, W. (1969) Elektrochromie-solvatochromie. Angew. Chem. ,81:195–232 (Int. Ed. Engl. 8:177–188).

    Article  Google Scholar 

  • Longuet-Higgins, H.C. and Pople, J.A. (1957) Electronic spectral shifts of non-polar molecules in non-polar solvents. J. Chem. Phys. ,27:192–194.

    Article  CAS  Google Scholar 

  • Lous, E.K. (1988) Interactions between pigments in photosynthetic protein complexes. An optically-detected magnetic resonance and magnetic field effect study. Ph.D. Thesis. University of Leiden.

    Google Scholar 

  • Lozano, R.M., Fernández-Cabrera, C. and Ramirez, J.M. (1990) The contribution of the carotenoid to the visible circular dichroism of the light-harvesting antenna of Rhodospirillum rubrum. Biochem. J. ,270:469–472.

    PubMed  CAS  Google Scholar 

  • Lutz, M. (1984) Resonance Raman studies in photosynthesis. In: Clark, R. J. H. and Hester, R. E. (eds.), Advances in Infrared and Raman Spectroscopy. Vol. 11, Wiley Heyden, Amsterdam, pp. 211–300.

    Google Scholar 

  • Lutz, M., Agalidis, I., Hervo, G. et al. (1978) On the state of carotenoids bound to reaction centres of photosynthetic bacteria: A resonance Raman study. Biochim. Biophys. Ada, 503:287–303.

    Article  CAS  Google Scholar 

  • Lutz, M., Chinsky, L. and Turpin, P. (1982) Triplet states of carotenoids bound to reaction centres of photosynthetic bacteria: Time-resolved resonance Raman spectroscopy. Photochem. Photobiol. ,36:503–515.

    Article  CAS  Google Scholar 

  • Lutz, M., Szponarski, W., Berger, G. et al. (1987) The stereoisomerisation of bacterial, reaction-centre-bound carotenoids revisited: an electronic absorption, resonance Raman and -NMR study. Biochim. Biophys. Acta, 894:423– 433.

    Article  CAS  Google Scholar 

  • Maroti, P., Kirmaier, C, Wraight, C. et al. (1985) Photochemistry and electron transfer in borohydride-treated photosynthetic reaction centres. Biochim. Biophys. Acta ,810:132– 139.

    Article  CAS  Google Scholar 

  • Matins, P. (1969) Triplet-triplet energy transfer from chlorophyll a to carotenoids in solution and in chloroplasts In: Metzner, H. (ed.), Progress in Photosynthesis Research ,Vol. 2. Tubingen, Germany, pp. 881–822.

    Google Scholar 

  • Mathins, P. and Kleo, J. (1973) The triplet state of ß-carotene and of analog polyenes of different length. Photochem. Photobiol ,18:343–346.

    Article  Google Scholar 

  • Mathis, P. and Verméglio, A. (1972) Formes transitoires des caroténoides; état triplet et radical-cation. Photochem. Photobiol. ,15:157–164.

    Article  PubMed  CAS  Google Scholar 

  • McGann, W.J. and Frank, H.A. (1983) Magnetic field effects on the fluorescence of mutant strains of Rhodopseudomonas capsulata. Biochim. Biophys. Acta ,725:178–189.

    Article  CAS  Google Scholar 

  • McGann, W.J. and Frank, H.A. (1985a) Transient electron spin resonance spectroscopy of the carotenoid triplet state in Rhodopseudomonas sphaeroides wild type. Chem. Phys. Lett. ,121:253–261.

    Article  CAS  Google Scholar 

  • McGann, W.J. and Frank, H.A. (1985b) Magnetophotoselection of Rhodopseudomonas sphaeroides wild type reaction centres. Biochim. Biophys. Acta ,807:101–109.

    Article  CAS  Google Scholar 

  • McRae, E.G. (1957) Theory of solvent effects on molecular electronic spectra. Frequency shifts. J. Phys. Chem. ,61:562–572.

    CAS  Google Scholar 

  • McVie, J., Sinclair, R.S., Tait, D. et al. (1979) Electron transfer reactions involving porphyrins and carotenoids. J. Chem. Soc. Faraday I ,75:2869–2872.

    Article  CAS  Google Scholar 

  • Michel, H. (1982) Three-dimensional crystals of a membrane protein complex. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Molec Biol., 158:567– 572.

    Article  PubMed  CAS  Google Scholar 

  • Michel, H., Epp, O. and Deisenhofer, J. (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. EMBO J. ,5:2445– 2451.

    PubMed  CAS  Google Scholar 

  • Mimuro, M., Nishimura, Y., Yamazaki, I. et al. (1991) Fluorescence properties of the allenic carotenoid fucoxanthin: Analysis of the effect of keto carbonyl group by using a model compound, all-trans-beta-apo-8’-carotenal. J. Luminesc. ,50:1–10.

    Article  Google Scholar 

  • Mimuro, M., Nagashima, U., Takaichi, S., et al. (1992) A special molecular structure in carotenoids is necessary for the in vivo energy transfer function in the algal photosynthetic pigment system. Biochim. Biophys. Acta ,1098:271–274

    Article  CAS  Google Scholar 

  • Monger, T.G., Cogdell, R.J. and Parson, W.W. (1976) Triplet states of bacteriochlorophyll and carotenoids in chromatophores of photosynthetic bacteria. Biochim. Biophys. Acta, 449:136–153.

    Article  PubMed  CAS  Google Scholar 

  • Moore, T.A., Gust, D. and Moore, A.L. (1990) The function of carotenoid pigments in photosynthesis and their possible role in the evolution of higher plants In: Krinsky, N., Mathews-Roth, M.M. and Taylor, R.F. (eds.), Carotenoids: Chemistry and Biology. Plenum Press, New York, pp. 223–228.

    Google Scholar 

  • Mosher, O.A., Flicker, W.M. and Kuppermann, A. (1973) Triplet states in 1,3-butadiene. Chem. Phys. Lett. ,19:332–333.

    Article  CAS  Google Scholar 

  • Nakayama, T.O.M. (1958) The carotenoids of Rhodopseudomonas. II. A comparative study of mutants and the wild type. Arch. Biochem. Biophys. ,75:356–360.

    Article  PubMed  CAS  Google Scholar 

  • Newell, W.R., Amerongen, H. van, Barber, J. and Van Grondelle, R. (1991) Spectroscopic characterisation of the reaction centre of Photosystem II using polarised light: Evidence for ß-carotene excitons in PS II reaction centres. Biochim. Biophys. Acta ,1057:232–238.

    Article  CAS  Google Scholar 

  • Noguchi, T., Kolaczkowski, S., Arbour, C. et al. (1989) Resonance Raman spectrum of the excited 2JA state of ß-carotene. Photochem. Photobiol ,50:603–609.

    Article  CAS  Google Scholar 

  • Noguchi, T., Hayashi, H, and Tasumi, T. (1990) Factors controlling the efficiency of energy transfer from carotenoids to bacteriochlorophyll in purple photosynthetic bacteria. Biochim. Biophys. Acta ,1017:280–290.

    Article  CAS  Google Scholar 

  • Parson, W.W. (1967) Flash-induced absorbance changes in Rhodospirillum rubrum chromatophores. Biochim. Biophys. Acta ,131: 154–172.

    Article  Google Scholar 

  • Parson, W.W. and Cogdell, R.J. (1975) The primary photochemical reaction of bacterial photosynthesis. Biochim. Biophys. Acta ,416:265–278.

    Google Scholar 

  • Parson, W.W. and Monger, T.G. (1976) Interrelationships among excited states in bacterial reaction centres. Brookhaven Symp. Bioi ,28:195–212.

    Google Scholar 

  • Raubach, R.A. and Guzzo, A.V. (1971) Singlet-triplet absorption spectrum of sãì-trans retinal. J. Phys. Chem. ,75:983–984.

    Article  PubMed  CAS  Google Scholar 

  • Reich, R. and Schmidt, S. (1972) Uber den Einblub elektrischer Felder auf das Absorptionsspektrum von Farbstoffmolekülen in Lipidschichten. I. Theorie. Ber. Bunsen. Ges. Phys. Chem. ,76:589–598.

    CAS  Google Scholar 

  • Reich, R. and Sewe, K.-U. (1977) The effect of molecular polarization on theelectrochromism of carotenoids. I. The influence of a carboxylic group. Photochem. Photobiol. ,26:11–17.

    Article  CAS  Google Scholar 

  • Robert, B. and Frank, H.A. (1988a) Effect of lithium dodecyl sulfate on B800–850 antenna complexes from Rhodopseudomonas acidophila 7750 : A resonance Raman study. In Scheer, H. and Schneider, S. (eds.), Photosynthetic Light-Harvesting Systems ,Vol. I. Walter de Gruyter & Co., pp.349–353

    Google Scholar 

  • Robert, B. and Frank, H.A. (1988b) A resonance Raman investigation of the effect of lithium dodecyl sulfate on the B800–850 light-harvesting protein of Rhodopseudomonas acidophila 7750. Biochim. Biophys. Acta ,934:401–405.

    Article  CAS  Google Scholar 

  • Rodgers, M.A.J. and Bates, A.L. (1980) Kinetic and spectroscopic features of some carotenoid triplet states: Sensitisation by singlet oxygen. Photochem. Photobiol. ,31:533– 537

    Article  CAS  Google Scholar 

  • Schenck, C.C., Mathis, P. and Lutz, M. (1984) Triplet formation and triplet decay in reaction centres from the photosynthetic bacterium Rhodopseudomonas sphaeroides. Photochem. Photobiol. ,39:407–417.

    Article  CAS  Google Scholar 

  • Schulten, K. and Karplus, M. (1972) On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett. ,15:305–309.

    Article  Google Scholar 

  • Schulten, K., Ohmine, I. and Karplus, M. (1976) Correlation effects in the spectra of polyenes. J. Chem. Phys. ,64:4422–4441.

    Article  CAS  Google Scholar 

  • Scolnik, P.A., Zannoni, D. and Marrs, B.L. (1980) Spectral and functional comparisons between the carotenoids of the two antenna complexes ofRhodopseudomonas capsulata. Biochim. Biophys. Acta ,593:230–240.

    Article  PubMed  CAS  Google Scholar 

  • Sewe, K. -U. and Reich, R (1977) The effect of molecular polarization on the electrochromism of carotenoids. II. Lutein-chlorophyll complexes: The origin of the field-indicating absorption change at 520 nm in the membranes of photosynthesis. Z. Naturforsch., 32C:161–177.

    CAS  Google Scholar 

  • Shreve, A.P., Trautman, J.K., Owens, T.G. and Albrecht, A.C. (1990) Two-photon excitation spectroscopy of thylakoid membranes from Phaeodactylum tricornutum Evidence for an in vivo two-photon-allowed carotenoid state. Chem. Phys. Lett. ,170:51–56.

    Article  CAS  Google Scholar 

  • Shreve, A.P, Trautman, J.K., Owens, T.G. and Albrecht, A.C. (1991a) Determination of the S2 lifetime of ß-carotene. Chem. Phys. Lett. ,178:89–96.

    Article  CAS  Google Scholar 

  • Shreve, A.P., Trautman, J.K., Frank, H.A. et al. (1991b) Femtosecond energy-transfer processes in theB80O-850 light-harvesting complex of Rhodobactersphaeroides 2.4.1. Biochim. Biophys. Acta ,1058:280–288.

    Article  PubMed  CAS  Google Scholar 

  • Shreve, A.P., Trautman, J.K., Owens, T.G. and Albrecht, A.C. (1991c) A femtosecond study of in vivo and in vitro electronic state dynamics of fucoxanthin and implications for photosynthetic carotenoid-to-chlorophyll energy transfer mechanisms. Chem. Phys., 154:171–178.

    Article  CAS  Google Scholar 

  • Siefermann-Harms, D. (1985) Carotenoids in photosynthesis. I. Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta ,811:325–355.

    Article  CAS  Google Scholar 

  • Sklar, L.A., Hudson, B.S., Petersen, M. and Diamond, J. (1977) Conjugated polyene fatty acids on fluorescent probes: spectroscopic characterisation. Biochemistry ,16: 813–819.

    Article  PubMed  CAS  Google Scholar 

  • Sly, W.G. (1964) The crystal structure of 15,15’-dehydro-ß-carotene. Acta Crystallogr., 17:511–528.

    Article  CAS  Google Scholar 

  • Snyder, R., Arvidson, E., Foote, C. et al. (1985) Electronic energy levels in long polyenes: S2 → S0 emission in all-trans-1,2,5,7,9,11,13-tetradecaheptaene. J. Am. Chem. Soc., 107:4117–4122.

    Article  CAS  Google Scholar 

  • Sterling, C. (1964) Crystal structure analysis of ß-carotene. Acta Crystallogr. ,17:1224–1228.

    Article  CAS  Google Scholar 

  • Sundström, V. and Grondelle, R. van (1991) The dynamics of excitation energy transfer in photosynthetic bacteria In: Scheer, H. (ed.), Chlorophylls. CRC Press, Boca Raton, pp. 1092–1124.

    Google Scholar 

  • Symons, M. and Swysen, C. (1983) On the location of the carotenoids in the light-harvesting pigment-protein complexes of the photosynthetic bacterium Rhodopseudomonas capsulata. Biochim. Biophys. Acta ,723:454.

    Article  CAS  Google Scholar 

  • Takiff, L. and Boxer, S.G. (1988a) Phosphorescence from the primary electron donor in Rhodobacter sphaeroides and Rhodopseudomonas viridis reaction centres. Biochim. Biophys. Acta ,932:325–334.

    Article  CAS  Google Scholar 

  • Takiff, L. and Boxer, S.G. (1988b) Phosphorescence spectra of bacteriochlorophylls. J. Am. Chem. Soc. ,110:4425–4426.

    Article  CAS  Google Scholar 

  • Tavan, P., and Schulten, K. (1979) The 21A -l1Bu energy gap in the polyenes: An extended configuration interaction study. J. Chem. Phys. ,70:5407–5413.

    Article  CAS  Google Scholar 

  • Telfer, A., De Las Rivas, J. and Barber, J. (1991) ß-Carotene within the isolated photosystem II reaction centre: photooxidation and irreversible bleaching of this chromophore by oxidized P680. Biochim. Biophys. Acta ,1060:106–114.

    Article  CAS  Google Scholar 

  • Thornber, J.P., Cogdell, R.J., Pierson, B.K. and Seftor, R.E.B. (1983) Pigment-protein complexes of purple photosynthetic bacteria: An overview. J. Cell. Biochem. ,23:159– 169.

    Article  PubMed  CAS  Google Scholar 

  • Thrash, R.J., Fang, H.L.-B. and Leroi, G.E. (1977) The Raman excitation profile spectrum of ß-carotene in thepreresonance region: Evidence for a low-lying singlet-state. J. Chem. Phys. ,67:5930–5933.

    Article  CAS  Google Scholar 

  • Thurnauer , M .C., Katz, J. J. and Norris, J.R. (1975) The triplet state in bacterial photosynthesis: Possible mechanisms of the primary photo-act. Proc. Natl. Acad. Sci. USA. ,72:3270– 3274.

    Article  PubMed  CAS  Google Scholar 

  • Trautman, J.K., Shreve, A.P., Violette, C.A. et al. (1990a) Femtosecond dynamics of energy transfer in B800–850 light-harvesting complexes of Rhodobacter sphaeroides. Proc. Natl. Acad. Sci. USA. ,87:215–219.

    Article  PubMed  CAS  Google Scholar 

  • Trautman, J.K., Shreve, A.P., Owens, T.G. and Albrecht, A.A. (1990b) Femtosecond dynamics of carotenoid-to-chlorophyll energy transfer in thylakoid membrane preparations from Phaeodactylum tricornutum and Nannochloropsis sp. Chem. Phys. Letts. ,166, 369–376.

    Article  CAS  Google Scholar 

  • Tuua, N.J. (1978) Modern Molecular Photochemistry. Benjamin Cummins, Menlo-Park, CA.

    Google Scholar 

  • Ullrich, J., Angerhofer, A., Schütz, J.U.von and Wolf, H.C. (1987) Zero-field absorption ODMR of reaction centres ofRhodobacter sphaeroides at temperatures between 4.2 and 75 K. Chem. Phys. Lett. ,140:416–420.

    Article  CAS  Google Scholar 

  • Ullrich, J., Speer, R., Greis, J. et al. (1989) Carotenoid triplet states in pigment-protein complexes fromphotosynthetic bacteria: Absorption-detected magnetic resonance from 4 to 225 K. Chem. Phys. Lett. ,155:363–370.

    Article  CAS  Google Scholar 

  • Vermeglio, A., Breton, J., Paillotin, G. and Cogdell, R. J. (1978) Orientation of chromophores in reaction centres ofRhodopseudomonas sphaeroides’. Aphotoselection study. Biochim. Biophys. Acta ,501:514–530.

    Article  PubMed  CAS  Google Scholar 

  • Wasielewski, M.R. and Kispert, L.D. (1986) Direct measurement of the lowest excited singlet-state lifetime of all-trans-ß-carotene and related carotenoids. Chem. Phys. Letts., 128: 238–243.

    Article  CAS  Google Scholar 

  • Wasielewski, M.R., Liddell,P. A., Barrett, D. et al. (1986a) Ultrafastcarotenoid to pheophorbide energy transfer in a biomimetic model for antenna function in photosynthesis. Nature, 322:570–572.

    Article  CAS  Google Scholar 

  • Wasielewski, M.R., Tiede, D.M. and Frank, H.A. (1986b) Ultrafast electron and energy transfer in reaction centre and antenna proteins from photosynthetic bacteria. In: Fleming, G. R. and Siegman, A. E. (eds.), Ultrafast Phenomena ,Vol. V. Springer-Verlag, Berlin, pp. 388–392.

    Google Scholar 

  • Watanabe, J., Kinoshita, S. and Kushida, T. (1987) Effects of nonzero correlation time of system-reservoir interaction on the excitation profiles of second-order optical processes in ß-carotene. J. Chem. Phys., 87:4471–4477.

    Article  CAS  Google Scholar 

  • Wilbrandt, R. and Jensen, N.-H. (1981) Time resolved resonance Raman spectroscopy: The triplet state of all-trans-retinal. J. Am. Chem. Soc. ,103:1036–1041.

    Article  CAS  Google Scholar 

  • Wilson, T. and Hastings, J.W. (1970) In: Giese, A.C. (ed.), Photophysiology ,Vol. 5. Academic Press, New York. p. 49.

    Google Scholar 

  • Witt, H. T. (1971) Coupling of quanta, electrons, fields, ions, and phosphorylation in the functional membrane of photosynthesis. Q. Rev. Biophys. ,4:365–477.

    Article  PubMed  CAS  Google Scholar 

  • Wraight, C.A., Cogdell, R.J., and Chance, B. (1978) Ion transport on electrochemical gradients in photosynthetic bacteria. In: Clayton, R. K. and Sistrom, W. R. (eds.), The Photosynthetic Bacteria. Plenum Press, New York, pp. 471–511.

    Google Scholar 

  • Wylie, I.W. and Koningstein, J.A. (1984) Photoisomerisation and time-resolved Raman studies of 15,15’-cis-ß-carotene and 15,15’-trans-ß-carotene. J. Phys. Chem. ,88:2950– 2953.

    Article  CAS  Google Scholar 

  • Yamamoto, H.Y. (1979) Biochemistry of the violaxanthin cycle in higher plants. PureAppl. Chem. ,51:639–648.

    Article  CAS  Google Scholar 

  • Yeates, T.O., Komiya, H., Chirino, A. et al. (1988) Structure of the reaction centre from Rhodopseudomonas sphaeroides R-26 and 2.4.1: Protein-cofactor (bacteriochlorophyll, bacteriopheophytin, and carotenoid) interactions. Proc. Natl. Acad. Sci. U.S.A. ,85:7993– 7997.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, C.-F., Violette, C.A., Frank, H.A. and Birge, R.R. (1989) Electronic states of isolated and reaction centre-bound carotenoids. Biophys. J. ,55:223a.

    Google Scholar 

  • Zurdo, J., Lozano, R.M., Fernández-Cabrera, C. and Ramirez, J.M. (1991) Dimeric carotenoid interaction in the light-harvesting antenna of purple phototrophic bacteria. Biochem. J., 274:881–884.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frank, H.A., Cogdell, R.J. (1993). The photochemistry and function of carotenoids in photosynthesis. In: Young, A.J., Britton, G. (eds) Carotenoids in Photosynthesis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2124-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2124-8_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4942-9

  • Online ISBN: 978-94-011-2124-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics