Skip to main content

Rheological Measurements on Small Samples

  • Chapter
Techniques in Rheological Measurement

Abstract

‘Rheological Measurements on Small Samples’ is a somewhat ambiguous title. The question arises, How small is small? We take it that the use of rheological data measured on small samples will be for designing or interpreting bulk-flow processes where the fluid may be considered a continuum. Thus, small means the smallest sample one can use that accurately represents the bulk rheological properties. In some cases the effect of sample size on the rheological properties is needed and will be discussed below. Pragmatically, a small sample is considered to have a volume in the range 1–20μl, since sample loading becomes difficult for volumes below this range. The maximum volume of 20 μl is chosen, as it is the volume of a typical polymer pellet. A 1 μl volume is equivalent to a cube with 1-mm long sides and 20 μl, a cube with 2–7 mm sides. The rheological properties in shear flow of small samples is exclusively discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. J. Benbow and P. Lamb, J. Sci. Inst., 1964, 41, 203.

    Article  Google Scholar 

  2. L. Dintenfass, Rheology of Blood in Diagnostic and Preventative Medicine, Butterworths, London, 1976.

    Google Scholar 

  3. J. N. Israelachvili, J. Coll. Int. Sci., 1986, 110, 263.

    Article  CAS  Google Scholar 

  4. J. N. Israelachvili and D. Tabor, Proc. Roy. Soc. A, 1972, 331, 19.

    Article  CAS  Google Scholar 

  5. R. I. Tanner, Engineering Rheology, Oxford University Press, Oxford, 1988.

    Google Scholar 

  6. B. D. Marsh and J. R. A. Pearson, Rheol. Acta, 1968, 7, 326.

    Article  Google Scholar 

  7. K. Walters, Rheometry, Chapman and Hall, London, 1975.

    Google Scholar 

  8. N. Adams and A. S. Lodge, Phil. Trans. Roy. Soc. Lond. A, 1964, 256, 149.

    Article  CAS  Google Scholar 

  9. W. G. Pritchard, Phil. Trans. Roy. Soc. Lond. A, 1971, 270, 507.

    Article  CAS  Google Scholar 

  10. J. F. Hutton, Nature, 1963, 200, 646; Proc. Roy. Soc. A, 1965, 287, 222; Rheol. Acta, 1969, 8, 54; in The Rheology of Lubricants, Davenport, T. C. (Ed.), Applied Science Publications, Barking, 1973, p. 108

    Article  Google Scholar 

  11. R. H. Burton, M. J. Folkes, K. A. Narh and A. Keller, J. Mat. Sci., 1983, 18, 315.

    Article  CAS  Google Scholar 

  12. D. S. Kalika, L. Nuel and M. M. Denn, J. Rheol., 1989, 33, 1059.

    Article  CAS  Google Scholar 

  13. P. J. Halley and M. E. Mackay, J. Rheol., 1991, 35, 1609.

    Article  Google Scholar 

  14. I. M. Krieger and S. H. Maron, J. Appl. Phys., 1953, 23, 147.

    Google Scholar 

  15. I. M. Krieger and H. Elrod, J. Appl. Phys., 1953, 24, 134.

    Article  Google Scholar 

  16. I. M. Krieger and S. H. Maron, J. Appl. Phys., 1954, 25, 72.

    Article  Google Scholar 

  17. I. M. Krieger, Trans. Soc. Rheol., 1968, 12, 5.

    Article  Google Scholar 

  18. T. M. T. Yang and I. M. Krieger, J. Rheol., 1978, 22, 413.

    Article  Google Scholar 

  19. R. Darby, J. Rheol., 1985, 29, 369.

    Article  CAS  Google Scholar 

  20. M. Mooney and R. H. Ewart, Physics, 1934, 5, 350.

    Article  CAS  Google Scholar 

  21. B. H. Zimm and D. M. Crothers, Nat. Acad. Sci. Proc., 1962, 48, 905.

    Article  CAS  Google Scholar 

  22. C. W. McCutchen, Biorheology, 1974, 11, 265.

    CAS  Google Scholar 

  23. R. B. Bird, R. C. Armstrong and O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, 2nd Edn, John Wiley and Sons, Brisbane, 1987.

    Google Scholar 

  24. R. Tran-Son-Tay, B. B. Beaty, D. N. Acker and R. M. Hochmuth, Rev. Sci. Inst., 1988, 59, 1399.

    Article  Google Scholar 

  25. R. Tran-Son-Tay, B. B. Beaty, B. E. Coffey and R. M. Hochmuth, 10th Int. Cong. Rheo. Vol 2, P. H. T. Uhlherr (Ed.), 1988, Australian Society of Rheology, Sydney, p. 355.

    Google Scholar 

  26. R. Tran-Son-Tay, B. E. Coffey and R. M. Hochmuth, J. Rheol., 1990, 34, 169.

    Article  Google Scholar 

  27. M. Gahleitner and R. Sobczak, Rheol Acta, 1987, 26, 371.

    Article  Google Scholar 

  28. K. Bernreitner, M. Gahleitner and R. Sobczak, J. Non-Newtonian Fluid Mech., 1988, 30, 73.

    Article  Google Scholar 

  29. M. Gahleitner and R. Sobczak, J. Phys. E Sci. Inst., 1988, 21, 1074.

    Article  Google Scholar 

  30. W. Hermann and R. Sobczak, J. Appl. Polym. Sci., 1989, 37, 2675.

    Article  Google Scholar 

  31. M. Gahleitner and R. Sobczak, Kunststoff German Plastics, 1989, 79, 67.

    Google Scholar 

  32. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhoff, The Hague, 1983.

    Google Scholar 

  33. G. Dazhi and R. I. Tanner, J. Non-Newtonian Fluid Mech., 1985, 17, 1.

    Article  Google Scholar 

  34. R. P. Chhabra, P. H. T. Uhlherr and D. V. Boger, J. Non-Newtonian Fluid Mech., 1980, 6, 187.

    Article  CAS  Google Scholar 

  35. F. Sugeng and R. I. Tanner, J. Non-Newtonian Fluid Mech., 1986, 20, 281.

    Article  CAS  Google Scholar 

  36. D. V. Boger, J. Non-Newtonian Fluid Mech., 1977/78, 3, 87.

    Article  CAS  Google Scholar 

  37. N. H. Park and T. F. Irvine, Rev. Sci. Instr., 1988, 59, 2051.

    Google Scholar 

  38. W. Philippoff, C. D. Han, B. Barnett and M. J. Dulfano, Biorheology, 1970, 7, 55.

    Google Scholar 

  39. J. Fisher and A. G. Fredrickson, Mol. Crys. Liq. Crys., 1969, 8, 267.

    Article  CAS  Google Scholar 

  40. V. Seshadri and S. P. Sutera, Trans. Soc. Rheol., 1970, 14, 351.

    Article  Google Scholar 

  41. R. J. Mannheimer, J. Coll. Inter. Sci., 1972, 40, 370.

    Article  CAS  Google Scholar 

  42. T. Q. Jiang, A. C. Young and A. B. Metzner, Rheol. Acta, 1986, 25, 397.

    Article  CAS  Google Scholar 

  43. Y. Cohen and A. B. Metzner, Rheol. Acta, 1986, 25, 28.

    Article  CAS  Google Scholar 

  44. A. V. Ramamurthy, J. Rheol., 1986, 30, 337.

    Article  CAS  Google Scholar 

  45. B. Y. Shin and I. J. Chung, Polym. Bull., 1988, 20, 399.

    Article  CAS  Google Scholar 

  46. D. Y. C. Chan and R. G. Horn, J. Chem. Phys., 1985, 83, 5311.

    Article  CAS  Google Scholar 

  47. J. N. Israelachvili, Pure Appl. Chem., 1988, 60, 1473.

    Article  CAS  Google Scholar 

  48. J. N. Israelachvili, S. J. Kott and L. J. Fetters, J. Polym. Sci. Polym. Phys., 1989, 27, 489.

    Article  CAS  Google Scholar 

  49. J. van Alsten and S. Granick, Phys. Rev. Lett., 1988, 61, 2570.

    Google Scholar 

  50. J. van Alsten and S. Granick, Langmuir, 1990, 6, 687.

    Google Scholar 

  51. J. van Alsten and S. Granick, Macromolecules, 1990, 23, 4856.

    Article  CAS  Google Scholar 

  52. A. Tonck, J. M. Georges and J. L. Loubet, J. Coll. Int. Sci., 1988, 126, 150.

    Article  CAS  Google Scholar 

  53. J. P. Montfort, A. Tonck, J. L. Loubet and J. M. Georges, J. Polym. Sci. Polym. Phys., 1991, 29, 677.

    Article  Google Scholar 

  54. J. van Alsten, pers. comm., 1990.

    Google Scholar 

  55. J. van Alsten, S. Granick and J. N. Israelachvili, J. Coll. Int. Sci., 1988, 125, 739.

    Article  Google Scholar 

  56. S. G. Hatzikiriakos and J. M. Dealy, J. Rheol., 1991, 35, 497.

    Article  CAS  Google Scholar 

  57. M. E. Mackay and C. A. Cathey, J. Rheol., 1991, 35, 237.

    Article  CAS  Google Scholar 

  58. H. M. Laun and J. Meissner, Rheol. Acta, 1980, 19, 60.

    Article  CAS  Google Scholar 

  59. J. M. Dealy and A. J. Giacomin, in Rheological Measurements, A. A. Collyer and D. W. Clegg (Eds), Elsevier Applied Science, London, 1988, p. 383.

    Google Scholar 

  60. W. J. Frith, J. Mewis and T. A. Strivens, Powder Tech., 1987, 51, 27; W. Stoks, H. Berghmans, P. Moldenaers and J. Mewis, Brit. Polym. J., 1988, 20, 361.

    Article  CAS  Google Scholar 

  61. L. Dintenfass, Biorheology, 1963, 1, 91; Biorheology, 1965, 2, 221; Biorheology, 1969, 6, 33

    CAS  Google Scholar 

  62. D. O. Miles, J. Appl. Phys., 1962, 33, 1422; D. O. Miles, G. C. Knollman and A. S. Hamamoto, Rev. Sci. Instr., 1965, 36, 158; D. O. Miles and G. C. Knollman, J. Appl. Phys., 1964, 35, 2549

    Article  Google Scholar 

  63. H. C. Rorden and A. Grieco, J. Appl. Phys., 1951, 22, 842.

    Article  CAS  Google Scholar 

  64. I. L. Hopkins, Trans. Am. Soc. Mech. Eng., 1951, 73, 195; J. Appl. Phys., 1953, 24, 1300

    CAS  Google Scholar 

  65. J. P. Arnould, J. M. Zahm, G. Pottier, C. Duvivier and E. Puchelle, Biorheology, 1984, Suppl. I, 123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mackay, M.E. (1993). Rheological Measurements on Small Samples. In: Collyer, A.A. (eds) Techniques in Rheological Measurement. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2114-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2114-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4937-5

  • Online ISBN: 978-94-011-2114-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics