Skip to main content

Extrahepatic metabolism of nicotine and related compounds by cytochromes P450

  • Chapter
Nicotine and Related Alkaloids

Abstract

Although the liver is the main site of metabolism of foreign chemicals — generally regarded as the most important organ in terms of kinetics and kinetics-dependent effects of xenobiotics — practically every tissue in the body contains at least some enzymes capable of metabolizing at least some exogenous substances (Gorrod, 1978). The gastrointestinal tract may contribute significantly to the first pass phenomenon of compounds absorbed in the gut. Respiratory tract, including nasal mucosa, and lungs form the first portal of entry for inhaled compounds. Skin is the barrier which also harbours xenobiotic-metabolizing enzymes, and kidney, through which the excreted chemicals and metabolites pass, is a metabolizing organ in its own right. Consequently, appropriate enzymes in any tissue may be of significance in the metabolic activation of drugs, carcinogens and other toxic substances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, L.M., Ward, J.M., Park, S.S. et al.(1989) Immunohistochemical localization of cytochromes P450 polyclonal and monoclonal antibodies. Pathol. Immunopathol. Res., 8, 61–94.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, R.D., Thompson, P.A. and Stone, R.B. (1987) Simultaneous determination of nicotine, cotinine and five additional nicotine metabolites in the urine of smokers using pre-column derivatisation and high-performance liquid chromatography. J. Chromatogr., 419, 375–80.

    Article  PubMed  CAS  Google Scholar 

  • Beckett, A.H. and Triggs, E.J. (1967) Enzyme induction in man caused by smoking. Nature, 216, 587.

    Article  PubMed  CAS  Google Scholar 

  • Boobis, A.R., Sesardic, D., Murray, B.P. et al.(1990) Species variation in the response of the cytochrome P450-dependent monooxygenase system to inducers and inhibitors. Xenobiotica, 20, 1139–61.

    Article  PubMed  CAS  Google Scholar 

  • Booth, J. and Boyland, E. (1971) Enzymatic oxidation of (—)nicotine by guinea-pig tissues in vitro. Biochem. Pharmacol., 20, 407–15.

    Article  CAS  Google Scholar 

  • Brittebo, E.B., Castonguay, A., Furuya, K. et al.(1983) Metabolism of tobacco- specific nitrosamines by cultured rat nasal mucosa. Cancer Res., 43, 4343–8.

    PubMed  CAS  Google Scholar 

  • Castonguay, A., Stoner, G.D., Schut, H.A.J. et al.(1983) Metabolism of tobacco-specific N-nitrosamines by cultured human tissues. Proc. Natl. Acad. Sci. USA, 80, 6694–7.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y-P. and Squier, C.A. (1990) Effect of nicotine on 7,12-dimethylbenz(a)anthracene carcinogenesis in hamster cheek pouch. J. Natl. Cancer Inst., 82, 861–4.

    Article  PubMed  CAS  Google Scholar 

  • Crespi, C.L., Penman, B.W., Gelboin, H.V. et al.(1991) A tobacco-derived nitrosamine, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, is activated by multiple human cytochrome P450s including the polymorphic human cytochrome P4502D6. Carcinogenesis, 12, 1197–201.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, A.R. and Hadley, W.M. (1991) Nasal cavity enzymes involved in xenobiotic metabolism: Effects on the toxicity of inhalants. CRC Crit. Rev. Toxicol., 21, 345–72.

    Article  CAS  Google Scholar 

  • Dajani, R.M., Gorrod, J.W. and Beckett, A.H. (1975) In vitro hepatic and extra-hepatic reduction of (—)nicotine-1’-N-oxide in rats. Biochem. Pharmacol., 24, 109–17.

    Article  PubMed  CAS  Google Scholar 

  • Damani, L.A., Pool, W.P., Crooks, P.A. et al.(1988) Stereoselectivity in the N’-oxidation of nicotine isomers by flavin-containing monooxygenase. Mol. Pharmacol., 33, 702–5.

    PubMed  CAS  Google Scholar 

  • De Waziers, I., Cugnenc, P.H., Yang, C.S., et al. (1990) Cytochrome P450 isoenzymes, epoxide hydrolase and glutathione transferases in rat and human hepatic and extrahepatic tissues. J. Pharmacol. Exp. Ther., 253, 387–94.

    PubMed  Google Scholar 

  • Ding, X. and Coon, M.J. (1988) Purification and characterization of two unique forms of cytochrome P450 from rabbit nasal microsomes. Biochemistry, 27, 8330–7.

    Article  PubMed  CAS  Google Scholar 

  • Ding, X., Porter, T.D., Peng, H-M. et al. (1991) cDNA and derived amino acid sequence of rabbit nasal cytochrome P450NMb (P450I1G1). A unique isozyme possibly involved in olfaction. Arch. Biochem. Biophys., 285, 120–5.

    Article  PubMed  CAS  Google Scholar 

  • Dolphin, C., Shephard, E.A., Povey, S. et al. (1991) Cloning and chromosomal mapping of a human flavin-containing monooxygenase (FMO1) primary sequence. J. Biol. Chem., 266, 12379–85.

    PubMed  CAS  Google Scholar 

  • Flammang, A.M., Gelboin, H.V., Aoyama, T. et al.(1992) Nicotine metabolism by cDNA-expressed human cytochrome P450s. Biochem. Archives, 8, 1–8.

    CAS  Google Scholar 

  • Foth, H., Looschen, H., Neurath, H. et al.(1991) Nicotine metabolism in isolated perfused lung and liver of phenobarbital-and benzoflavone-treated rats. Arch. Toxicol., 65, 68–72.

    Article  PubMed  CAS  Google Scholar 

  • Foth, H., Rudell, U., Ritter, G. et al.(1988) Inhibitory effect of nicotine on benzo(a)pyrene elimination and marked pulmonary metabolism of nicotine in isolated perfused rat lung. Klin. Wochenschr., 66, 98–104.

    PubMed  CAS  Google Scholar 

  • Foth, H., Walther, U.I. and Kahl, G.F. (1990) Increased hepatic nicotine elimination after phenobarbital induction in the conscious rat. Toxicol. Appl. Pharmacol., 105, 382–92.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez, F.J. (1989) The molecular biology of cytochrome P450s. Pharmac. Rev., 40, 243–88.

    Google Scholar 

  • Gorrod, J.W. (1978) Extra-hepatic metabolism of drugs, in Drug metabolism in man. (Eds J.W. Gorrod and A.H. Beckett ), Taylor & Francis Ltd., London, pp. 157–74.

    Google Scholar 

  • Gorrod, J.W. and Jenner, P. (1975) The metabolism of tobacco alkaloids, in Essays in Toxicology, vol. 6 (Ed. W.J. Hayes, Jr), Academic Press, New York, pp. 35–78.

    Google Scholar 

  • Gram, T.E. (Ed.) (1980) Extrahepatic metabolism of drugs and other foreign compounds. MTP Press Ltd., Falcon House, Lancaster, England.

    Google Scholar 

  • Guengerich, F.P. (Ed) (1987) Mammalian Cytochromes P450. Vols I & II. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Guengerich, F.P. (1990) Purification and characterization of xenobiotic-metabolizing enzymes from lung tissue. Pharmac. Ther., 45, 299–307.

    Article  CAS  Google Scholar 

  • Guengerich, F.P. (1992) Human cytochrome P450 enzymes. Life Sci. 50, 1471–8.

    Article  PubMed  CAS  Google Scholar 

  • Hadley, W.M. and Dahl, A.R. (1982) Cytochrome P450 dependent mono- oxygenase activity in rat nasal epithelial membranes. Toxicol. Lett., 10, 417–22.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, D.K., Bjercke, R.J., Langone, J.J. et al.(1991) Metabolism of nicotine by rat liver cytochromes P450. Assessment utilizing monoclonal antibodies to nicotine and cotinine. Drug Metab. Disp., 19, 804–8.

    CAS  Google Scholar 

  • Hanson, E. and Schmiterlöw, C.G. (1964) Metabolism of nicotine in various tissues, in: Tobacco alkaloids and related compounds(Ed. U.S. von Euler ), Perga-mon Press, pp. 87–98.

    Google Scholar 

  • Hecht, S.S., Castonguay, A., Rivenson, A. et al.(1983) Tobacco specific nitrosamines: Carcinogenicity, metabolism, and possible role in human cancer. J Environ. Sci. HealthCI(1), 1–54.

    Google Scholar 

  • Hecht, S.S. and Hoffmann, D. (1988) Tobacco-specific nitrosamines, an important group of carcinogens in tobacco and tobacco smoke. Carcinogenesis, 9, 875–84.

    Article  PubMed  CAS  Google Scholar 

  • Hill, D.L., Laster, W.R. and Struck, R.F. (1972) Enzymatic metabolism of cyclophosphamide and nicotine and production of a toxic cyclophosphamide metabolite. Cancer Res., 32, 658–65.

    PubMed  CAS  Google Scholar 

  • Hoffmann, D. and Hecht, S.S. (1985) Nicotine-derived N-nitrosamines and tobacco-related cancer: Current status and future directions. Cancer Res., 45, 935–44.

    PubMed  CAS  Google Scholar 

  • IARC (1986) Tobacco Smoking, IARC, Lyon, France.

    Google Scholar 

  • Kyerematen, G.A., Morgan, M., Warner, G. et al.(1990) Metabolism of nicotine by hepatocytes. Biochem. Pharmacol., 40, 1747–56.

    Article  PubMed  CAS  Google Scholar 

  • Kyerematen, G.A. and Vesell, E.S. (1991) Metabolism of nicotine. Drug Metab. Rev., 23, 3–41.

    Article  PubMed  CAS  Google Scholar 

  • Larsson, P., Pettersson, H. and Tjälve, H. (1989) Metabolism of aflatoxin B1 in the bovine olfactory mucosa. Carcinogenesis, 10: 111–8.

    Article  Google Scholar 

  • Lindberg, R.L.P. and Negishi, M. (1989) Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature, 339, 632–4.

    Article  PubMed  CAS  Google Scholar 

  • Mattamal, M.B., Lakshmi, V.M., Zenser, T.V. et al.(1987) Lung prostaglandin H synthase and mixed-function oxidase metabolism of nicotine. J. Pharmacol. Exp. Ther.242, 827–32.

    Google Scholar 

  • McCoy G.D., DeMarco, G.J. and Koop, D.B. (1980) Microsomal nicotine metabolism: A comparison of relative activities of six purified rabbit cytochrome P450 isoenzymes. Biochem. Pharmacol., 38, 1185–8.

    Article  Google Scholar 

  • McCracken, N.W., Cholerton, S. and Idle J.R. (1992) Cotinine formation by cDNA-expressed human cytochromes P450, Medical Science Research, 20, 877–8.

    CAS  Google Scholar 

  • Murphy, S.E. and Heiblum, R. (1990) Effect of nicotine and tobacco-specific nitrosamines on the metabolism of N’-nitrosonornicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone by rat oral tissue. Carcinogenesis, 11, 1663–6.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H. (1988) Nicotine metabolism in mammals. Drug Metab. Drug Interact., 6, 95–122.

    Article  CAS  Google Scholar 

  • Nakayama, H., Fujihara, S., Nakashima, T. et al.(1987) Formation of two major nicotine metabolites in livers of guinea-pigs. Biochem. Pharmacol., 36, 4313–7.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H., Nakashima, T. and Kurogochi, Y. (1982) Participation of cytochrome P450 in nicotine oxidation. Biochem. Biophys. Res. Commun., 108, 200–5.

    Article  PubMed  CAS  Google Scholar 

  • Nakayama, H., Nakashima, T. and Kurogochi, Y. (1985) Cytochrome P450-dependent nicotine oxidation by liver microsomes of guinea pigs. Immuno-chemical evidence with antibody against phenobarbital-inducible cytochrome P450. Biochem. Pharmacol., 34, 2281–6.

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W. (1989) The Ah locus: genetic differences in toxicity, cancer, mutation, and birth defects. Crit. Rev. Toxicol., 20, 153–74.

    Article  PubMed  CAS  Google Scholar 

  • Nebert, D.W., Nelson, D.R., Coon, M.R. et al.(1991) The P450 superfamily: Update on new sequences, gene mapping, and recommended nomenclature. DNA Cell. Biol., 10, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Philpot, R.M. and Smith, B.R. (1984) Role of cytochrome P450 and related enzymes in the pulmonary metabolism of xenobiotics. Environ. Health Per-sped., 55, 359–67.

    Article  CAS  Google Scholar 

  • Poulsen, L.L., Taylor, K., Williams, D.E. et al.(1986) Substrate specificity of the rabbit lung flavin-containing monooxygenase for amines: oxidation products of primary alkylamines. Mol. Pharmacol., 30, 680–5.

    PubMed  CAS  Google Scholar 

  • Rudell, U., Foth, H. and Kahl, G.F. (1987) Eight-fold induction of nicotine elimination in perfused rat liver by pretreatment with phenobarbital. Biochem. Biophys. Res. Commun., 148, 192–8.

    Article  PubMed  CAS  Google Scholar 

  • Rydström, J., Montelius, J., Bengtsson, M. (Eds) (1983) Extrahepatic drug metabolism and chemical carcinogenesis. Elsevier Science Publishers, Amsterdam, The Netherlands.

    Google Scholar 

  • Scheline, R.R. (1978) Mammalian metabolism of plant xenobiotics., Academic Press, London.

    Google Scholar 

  • Schuller, H.M., Castonguay, A., Orloff, M. et al.(1991) Modulation of the uptake and metabolism of 4-(methуlnitrosamino)-1-(3-pyridyí)-1-butanone by nicotine in hamster lung. Cancer Res., 51, 2009–14.

    PubMed  CAS  Google Scholar 

  • Shigenaga, M.K., Trevor, A.J. and Castagnoli, N. (1988) Metabolism-dependent covalent binding of (5)-[53H]nicotine to liver and lung microsomal macromolecules. Drug. Metab. Disp., 16, 397–402.

    CAS  Google Scholar 

  • Shimada, T. and Guengerich, P. (1990) Inactivation of 1,3–1,6,- and 1,8-dinitropyrene by cytochrome P450 enzymes in human and rat liver microsomes. Cancer Res., 50, 2036–43.

    PubMed  CAS  Google Scholar 

  • Soucek, P. and Gut, I. (1992) Cytochromes P450 in rats — structures, functions, properties and relevant human forms. Xenobiotica 22, 83–104.

    Article  PubMed  CAS  Google Scholar 

  • St Slhandske, T. (1970) Effects of increased liver metabolism of nicotine on its uptake, elimination and toxicity in mice. Acta Physiol. Stand., 80, 222–34.

    Article  Google Scholar 

  • Tjälve, H. and Castonguay, A. (1983) The in vivotissue disposition and in vitrotarget-tissue metabolism of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in Syrian golden hamsters. Carcinogenesis, 4, 1259–65.

    Article  PubMed  Google Scholar 

  • Turner, D.M., Armitage, A.K., Briant, R.H. et al.(1975) Metabolism of nicotine by the isolated perfused dog lung. Xenobiotica, 5, 539–51.

    Article  PubMed  CAS  Google Scholar 

  • Vähäkangas, K., Raunio, H., Pasanen, M. et al.(1989) Comparison of the formation of benzo(a)pyrene diolepoxide-DNA adducts in vitroby rat and human microsomes: Evidence for the involvement of P450IAI and P450IA2. J. Biochem. Toxicol., 4, 79–86.

    Article  Google Scholar 

  • Vähäkangas, K., Nevasaari, K., Pelkonen, O. et al.(1979) Effects of various in vitroinhibitors of benzo(a)pyrene metabolism in isolated rat lung perfusion. Acta Pharmacol. Toxicol., 45, 1–8.

    Article  Google Scholar 

  • Watkins, P.B. (1990) Role of cytochromes P450 in drug metabolism and hepatotoxicity. Seminars in Liver Disease, 10, 235–50.

    Article  PubMed  CAS  Google Scholar 

  • Watkins, P.B., Wrighton, S.A., Schuetz, E.G. et al.(1987) Identification of gluco- corticoid-inducible cytochromes P450 in the intestinal mucosa of rats and man. J. Clin. Invest., 80, 1029–36.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, D.J. and Azaroff, L. (1992) Phenobarbital induction of cytochrome P450 gene expression. Biochem. J., 281, 577–92.

    PubMed  CAS  Google Scholar 

  • Waxman, D.J., Lapenson, D.P., Aoyama, T. et al. (1991) Steroid hormone hydroxylase specificities of eleven cDNA-expressed human cytochrome P450s. Arch. Biochem. Biophys., 290, 160–6.

    Google Scholar 

  • Wheeler, C.W. and Guenthner, T.M. (1991) Cytochrome P450-dependent metabolism of xenobiotics in human lung. J. Biochem. Toxicol., 6, 163–9.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler, C.W., Park, S.S. and Guenthner, T.M. (1990) Immunochenical analysis of a cytochrome P450IAI homologue in human lung microsomes. Mol. Pharmacоl., 38, 634–43.

    CAS  Google Scholar 

  • Williams, D.E., Ding, X. and Coon, M.J. (1990a) Rabbit nasal cytochrome P450 NMa has high activity as a nicotine oxidase. Biochem. Biophys. Res. Commun., 166, 945–52.

    Article  CAS  Google Scholar 

  • Williams, D.E., Shigenaga, M.K. and Castagnoli, N. (1990b) The role of cytochromes P450 and flavin-containing monooxygenase in the metabolism of (S)-nicotine by rabbit lung. Drug Metab. Disp., 18, 418–28.

    CAS  Google Scholar 

  • Yamamoto, L., Nagai, K., Kimura, H. et al.(1966) Nicotine and some carcinogens in special reference to the hepatic drug-metabolizing enzymes. Japan. J. Pharmacol., 16, 183–90.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vähäkangas, K., Pelkonen, O. (1993). Extrahepatic metabolism of nicotine and related compounds by cytochromes P450. In: Gorrod, J.W., Wahren, J. (eds) Nicotine and Related Alkaloids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2110-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2110-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4936-8

  • Online ISBN: 978-94-011-2110-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics