Skip to main content

Physiologically based pharmacokinetic modelling of nicotine

  • Chapter

Abstract

Pharmacokinetic models are used to describe or predict the time-dependent changes in drug concentration in blood and tissues, i.e., concentration × time (C × t) curves. There are two basic approaches to pharmacokinetic modelling. In the first, empirical or compartmental models are derived using curve-fitting programs to provide a mathematical description of C × t data. In the second, physiologically based pharmacokinetic (PBPK) models are constructed based on anatomical and physiological data from animals and humans, incorporating physi-cochemical data on a specific drug or chemical. Unlike empirical or compartmental pharmacokinetic models, PBPK models are physiologically realistic, bringing a biological basis to the mathematical description of a compound’s pharmacokinetics. Until relatively recently, the utility of PBPK modelling had been limited by the computational intensity of the PBPK approach and the availability of adequate computer hardware and software. In recent years, however, PBPK modelling has become a practical tool for the study of a variety of pharmacological and toxicological problems (Bischoff et al, 1971; Gerlowski and Jain, 1983).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramson, D.I. (1967) Circulation in the extremities, Academic Press, New York.

    Google Scholar 

  • Adlkofer, F., Scherer, G., Jarczyk, L. et al(1988) Pharmacokinetics of 3’- hydroxycotinine, in Pharmacology of Nicotine, ICSU Symposium Series, 9, 25–8.

    Google Scholar 

  • Andersen, M.E. (1989) Tissue dosimetry, physiologically based pharmacokinetic modeling, and cancer risk assessment. Cell Biol and Toxicol, 5, 405–16.

    Article  CAS  Google Scholar 

  • Ariens, E.J., and Simonis, A.M. (1964) A molecular basis for drug action. The interaction of one or more drugs with different receptors. J. Pharm. Pharmacol, 16, 289–312.

    Article  CAS  Google Scholar 

  • Benowitz, N.L. (1988) Pharmacokinetics and pharmacodynamics of nicotine, in Pharmacology of Nicotine, ICSU Symposium Series, 9.

    Google Scholar 

  • Benowitz, N.L. and Jacob, P. III. (1985) Metabolism, pharmacokinetics and pharmacodynamics of nicotine in man, in Tobacco Smoking and Nicotine: A Neuro-biological Approach, (Eds E.T. Iwamoto and L. David ), Plenum Press, New York.

    Google Scholar 

  • Benowitz, N.L., Jacob, P. III, Jones, R.T. et al(1982) Interindividual variability in the metabolism and cardiovascular effects of nicotine in man. J. Pharmacol Exp. Ther., 221, 368–72.

    PubMed  CAS  Google Scholar 

  • Benowitz, N.L., Kuyt, F., Jacob, P. III et al(1983) Cotinine disposition and effects. Clin. Pharmacol Ther., 34, 604–11.

    Article  PubMed  CAS  Google Scholar 

  • Bischoff, K.B., Dedrick, R.L., Zaharko, D.S. et al(1971) Methotrexate pharmacokinetics. J. Pharm. Sci., 60, 1128–33.

    Article  PubMed  CAS  Google Scholar 

  • Curvall, M., Elwin, C.E., Kazemi-Vala, E. et al(1990a) The pharmacokinetics of cotinine in plasma and saliva from non-smoking healthy volunteers. Eur. J. Clin. Pharmacol, 38, 281–7.

    Article  CAS  Google Scholar 

  • Curvall, M., and Enzell, C.R. (1986) Monitoring absorption by means of determination of nicotine and cotinine. Arch. Toxicol Suppl, 9, 88–102.

    Article  PubMed  CAS  Google Scholar 

  • Curvall, M., Kazemi-Vala, E., and Enzell, C.R. (1982) Simultaneous determination of nicotine and cotinine in plasma using capillary column gas chromatography with nitrogen sensitive detection. J. Chromatogr. Biomed. Appl, 232, 283–93.

    Article  CAS  Google Scholar 

  • Curvall, M., Kazemi-Vala, E., Enzell, C.R. et al(1990b) Simulation and evaluation of nicotine intake during passive smoking: cotinine measurements in body fluids of nonsmokers given intravenous infusions of nicotine. Clin. Pharmacol Ther., 47, 42–9.

    Article  CAS  Google Scholar 

  • Davis, N.R. and Mapleson, W.W. (1981) Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics. Br. J. Anaesth., 53, 399–404.

    Article  PubMed  CAS  Google Scholar 

  • deBethizy, J.D., and Andersen, M.E. (1990) A physiologically based pharmacokinetic (PB-PK) model for nicotine in the rat (Abstract). Toxicologist, 10, 862.

    Google Scholar 

  • DeSchepper, P.J., Hecken, A.V., Daenens, P. et al(1987) Kinetics of cotinine after oral and intravenous administration to man. Eur. J. Clin. Pharmacol, 31, 583–58.

    Article  CAS  Google Scholar 

  • D’Souza, R.W. and Boxenbaum, H. (1988) Physiological pharmacokinetic models: some aspects of theory, practice and potential. Toxicol Ind. Health, 4, 151–71.

    PubMed  Google Scholar 

  • Feyerabend, C., Ings, R.M.J., and Russell, M.A.H. (1985) Nicotine pharmacokinetics and its application to intake from smoking. Br. J. Clin. Pharmacol, 19, 239–47.

    Article  PubMed  CAS  Google Scholar 

  • Gabrielsson, J. and Bondesson, U. (1987) Constant-rate infusion of nicotine and cotinine. I. A physiological pharmacokinetic analysis of the cotinine disposition, and effects on clearance and distribution in the rat. J. Pharmacokin. Biopharm., 15, 583–99.

    CAS  Google Scholar 

  • Galeazzi, R.L. Daenens, P. and Gugger, M. (1985) Steady-state concentration of cotinine as a measure of nicotine-intake by smokers. Eur. J. Clin. Pharmacol. 28, 301 - 4.

    Article  PubMed  CAS  Google Scholar 

  • Gastonguay, M.R., Baiter, N.J. and Schwartz, S.L. (1990) A physiologically-based pharmacokinetic (PBPK) model of nicotine and three metabolites (Abstract). Pharmacologist, 32, 141.

    Google Scholar 

  • Gerlowski, L.E. and Jain, R.K. (1983) Physiologically based pharmacokinetic modeling: principles and applications. J. Pharm. Sci., 72, 1103–25.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, P., III, Benowitz, N.L. and Shulgin, A.T. (1988) Recent studies of nicotine metabolism in humans. Pharmacol. Biochem. Behav., 30, 249–53.

    Article  PubMed  CAS  Google Scholar 

  • Kyerematen, G.A., Damiano, M.D., Dvorchik, B.H. et al.(1982) Smoking-induced changes in nicotine disposition: application of a new HPLC assay for nicotine and its metabolites. Clin. Pharmacol. Ther., 32, 769–80.

    Article  PubMed  CAS  Google Scholar 

  • Kyerematen, G.A., Morgan, M.L., Chattopadhyay, B. et al.(1990) Disposition of nicotine and eight metabolites in smokers and nonsmokers: identification in smokers of two metabolites that are longer lived than cotinine. Clin. Pharmacol. Ther., 48, 641–51.

    Article  PubMed  CAS  Google Scholar 

  • Leggett, R.W. and Williams, L.R. (1991) Suggested reference values for regional blood volumes in humans. Health Physics, 60, 139–54.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, E.A., Tang, H., Gunther, K. et al.(1990) Use of urine nicotine and cotinine measurements to determine exposure of nonsmokers to sidestream tobacco smoke. Indoor Air ‘80. International Conference on Indoor Air Quality and Climate. Ottawa, 151–6.

    Google Scholar 

  • Notari, R.E. (1987) Biopharmaceutics and clinical pharmacokinetics. 4th ed. Marcel Dekker Inc., New York, 49.

    Google Scholar 

  • Plowchalk, D.R. and deBethizy, J.D. (1991) A PB-PK model for nicotine tissue and plasma kinetics in the Sprague-Dawley rat (Abstract). Toxicologist 11, 280.

    Google Scholar 

  • Plowchalk, D.R., Fluhler, E.N. Lipiello, P.M. et al.(1992) A biologically-based model for nicotinic receptor dynamics in the rat brain (Abstract). Toxicologist, 293.

    Google Scholar 

  • Porchet, H.C., Benowitz, N.L. and Sheiner, L.B. (1988) Pharmacodynamic model of tolerance: application to nicotine. Pharmacol. Exp. Ther., 244, 231–6.

    CAS  Google Scholar 

  • Porchet, H.C., Benowitz, N.L., Sheiner, L.B. et al(1987) Apparent tolerance to the acute effect of nicotine results in part from distribution kinetics. J. Clin. Invest., 80, 1466–71.

    Article  PubMed  CAS  Google Scholar 

  • Quiring, D.P. (1949) Collateral circulation: anatomical aspects, Lea and Febiger, Philadelphia.

    Google Scholar 

  • Robinson, D.E., Baiter, N.J. and Schwartz, S.L. (1992) A physiologically-based pharmacokinetic model for nicotine and cotinine in man. J. Pharmacokin. Biopharm., 20, 591–609.

    CAS  Google Scholar 

  • Rothe, C.F. (1984) Venous system: physiology of the capacitance vessels, in Handbook of Physiology, Section 2 Volume III (Ed. J.T. Shepherd ), Waverly Press, Baltimore, 397.

    Google Scholar 

  • Rothe, C.F. (1984) Venous system: physiology of the capacitance vessels, in Handbook of Physiology, Section 2 Volume III (Ed. J.T. Shepherd ), Waverly Press, Baltimore, 397.

    Google Scholar 

  • Scheiner, L.B. (1989) Clinical pharmacology and the choice between theory and empiricism. Clin. Pharmacol. Ther., 6, 605–15.

    Article  Google Scholar 

  • Scherer, G. Jaczy, L. Heller, W.D. et al.(1988) Pharmacokinetics of nicotine, cotinine, and 3’-hydroxycotinine in cigarette smokers. Klin. Wochenschr., 66(suppl XI), 5–11.

    PubMed  CAS  Google Scholar 

  • Schievelbein, H. (1982) Nicotine, resorption and fate. Pharmacol. Ther., 18, 233–48.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz. S.L., Ball, R.T. and Witorsch, P. (1987) Mathematical modelling of nicotine and cotinine as biological markers of environmental tobacco smoke exposure. Tox. Let., 35, 53–8.

    Article  CAS  Google Scholar 

  • Sebalt, R.J. and Kreeft, J.H. (1987) Efficient pharmacokinetic modeling of complex clinical dosing regimens: the universal elementary dosing regimen and computer algorithm EDFAST. J. Pharm. Sci., 76, 93–100.

    Article  Google Scholar 

  • Williams, L.R. and Leggett, R.W. (1989) Resting values for resting blood flow to organs of man. Clin. Phys. Physiol. Meas., 10, 187–217.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schwartz, S.L., Gastonguay, M.R., Robinson, D.E., Balter, N.J. (1993). Physiologically based pharmacokinetic modelling of nicotine. In: Gorrod, J.W., Wahren, J. (eds) Nicotine and Related Alkaloids. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2110-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2110-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4936-8

  • Online ISBN: 978-94-011-2110-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics