Skip to main content

Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells

  • Chapter
Molecular Chaperones

Summary

In response to either elevated temperatures or several other metabolic insults, cells from all organisms respond by increasing the expression of so-called heat shock proteins (hsp or stress proteins). In general, the stress response appears to represent a universal cellular defence mechanism. The increased expression and accumulation of the stress proteins provides the cell with an added degree of protection. Studies over the past few years have revealed a role for some of the stress proteins as being intimately involved in protein maturation. Members of the hsp 70 family, distributed throughout various intracellular compartments, interact transiently with other proteins undergoing synthesis, translocation, or higher ordered assembly. Although not yet proven, it has been suggested that members of the hsp 70 family function to slow down or retard the premature folding of proteins in the course of synthesis and translocation. Yet another family of stress proteins, the hsp 60 or GroEL proteins (chaperonins), appear to function as catalysts of protein folding. Here I discuss the role of those stress proteins functioning as molecular chaperones, both within the normal cell and in the cell subjected to metabolic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ananthan, J., Goldberg, A.L. & Vocllmy, R. 1986 Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science, Wash. 232, 252–254.

    Article  Google Scholar 

  • Anfinsen, C.B. 1973 Principles that govern the folding of protein chains. Science, Wash. 8, 223–230.

    Article  Google Scholar 

  • Beckmann, R.P., Lovett, M. & Welch, W.J. 1992 Examining the function and regulation of hsp 70 in cells subjected to metabolic stress. J. Cell Biol. 117, 1137–1150.

    Article  PubMed  CAS  Google Scholar 

  • Beckmann, R.P., Mizzen, L.A. & Welch, Wr.J. 1990 Interaction of hsp 70 with newly synthesized proteins: Implication for protein folding and assembly. Science, Wash. 248, 850–854.

    Article  CAS  Google Scholar 

  • Bole, D.G., Hendershot, L.M. & Kearney, J.F. 1986 Post-translational associations of immunoglobulin heavy chain binding protein with nascent heavy chains in non-secreting and secreting hybridomas. J. Cell Biol. 102, 1558–1566.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, M.Y., Ulrich-Hartl, F., Martin, J., Pollock, R.A., Kalousek, F., Neupert, W., Hallberg, E.B., Hallberg, R.L. & Horwich, A.L. 1989 Mitochondrial heat shock protein hsp 60 is essential for assembly of proteins imported into yeast mitochondria. Nature, Lond. 337, 620–625.

    Article  CAS  Google Scholar 

  • Chirico, W.J., Waters, M.G. & Blobel, G. 1988 70 k heat shock related proteins stimulate protein translocation into microsomes. Nature, Lond. 333, 805–810.

    Article  Google Scholar 

  • Copeland, C.S., Doms, R.W., Bolzau, E.M., Webster, R.G. & Helenius, A. 1986 Assembly of influenza hemagluttinin trimers and its role in intracellular transport. J. Cell Biol. 103, 1179–1191.

    Article  PubMed  CAS  Google Scholar 

  • Craig, E.A. 1985 The heat shock response. CRC crit. Rev. Biochem. 18, 239–280.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, R.J. 1990 Molecular chaperones — the plant connection. Science, Wash. 250, 954–959.

    Article  CAS  Google Scholar 

  • Ellis, RJ. & van der Vies, S.M. 1991 Molecular chaperones. A. Rev. Biochem. 60, 321–347.

    Article  CAS  Google Scholar 

  • Deshaies, RJ., Koch, B.D., Weiner-Washburne, M., Craig, E. & Schekman, R. 1988 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, Lond. 333, 800–805.

    Article  Google Scholar 

  • Flaherty, K.M., DeLuea-Flaherty, C. & McCay, D. 1990 Three-dimensional structure of the ATPase fragment of a 70 k heat shock congnate protein. Nature, Lond. 346, 623–629.

    Article  CAS  Google Scholar 

  • Flynn, G., Chapell, T. & Rothman, J.E. 1989 Peptide binding and release by proteins implicated as catalysts of protein folding. Science, Wash. 245, 385–390.

    Article  CAS  Google Scholar 

  • Gaitanaris, G.A., Papavassilou, A.G., Rubuck, P., Silverstein, S.J. & Gottesman, M.E. 1990 Renaturation of lambda repressor requires heat shock proteins. Cell 61, 1013–1020.

    Article  PubMed  CAS  Google Scholar 

  • Geo, Y., Thomas, J., Chow, R., Lee, G.H. & Cowan, N. 1992 A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1060.

    Article  Google Scholar 

  • Georgopoulos, C, Ang, D., Liberek, K., Zylicz, M. 1990 Properties of the Escherichia coli heat shock proteins and their role in bacteriophage lambda growth. In Stress Proteins in Biology and Medicine (editors, R. Morimoto, A. Tissieres, and C. Georgopoulos). Cold Spring Harbor Laboratory Press, CSH, N.Y.

    Google Scholar 

  • Gething, M.-J., McCammon, K. & Sambrook, J. 1986 Expression of wild type and mutant forms of influenza hemagglutinin: the role of folding in intracellular transport. Cell 46, 939–950.

    Article  PubMed  CAS  Google Scholar 

  • Goloubinoff, P., Christella, J J., Gatenby, A.A. & Lorimer, G.H. 1989 Reconstitution of active dimeric ribulose biophosphate carboxylase from an unfolded state depends on two chaperonin proteins and Mg-ATP. Nature, Lond. 342, 884–890.

    Article  CAS  Google Scholar 

  • Haas, I.G. & Wabl, M. 1983 Immunoglobulin heavy chain binding protein. Nature, Lond. 306, 387–389.

    Article  CAS  Google Scholar 

  • Hemmingsen, S.M., Woolford, C, Van der Vies, S.M., Tilly, K., Dennis, D.T., Georgopoulos, C, Hendrix, R.W. & Ellis, R.J. 1988 Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature, Lond. 333, 330–334.

    Article  CAS  Google Scholar 

  • Hightower, L.E. 1980 Cultured cells exposed to amino acid analogues or puromycin rapidly synthesize several polypeptides. J. Cell Physiol. 102, 407–424.

    Article  PubMed  CAS  Google Scholar 

  • Kang, P.J., Ostermann, J., Shilling, J., Nevpert, W., Craig, E.A. & Pfanner, N. 1990 Requirement for hsp 70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature, Lond. 348, 137–143.

    Article  CAS  Google Scholar 

  • Landschulz, W.H., Johnson, P.F. & McKnight, S. 1988 The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science, Wash. 240, 1759–1764.

    Article  CAS  Google Scholar 

  • Langer, T., Lu, C, Echols, H., Flanagan, J., Hayer, M.K. & Ulrich-Hartl, F. 1992 Successive action of DnaK, DnaJ, and GroEL along the pathway of chaperone-mediated protein folding. Nature, Lond. 356, 683–689.

    Article  CAS  Google Scholar 

  • Lewis, V.A., Hynes, G, Zheng, D., Saibil, H. & Willison, K. 1992 T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature, Lond. 358, 245–252.

    Article  Google Scholar 

  • Li, G.C. & Laszlo, A. 1985 Amino acid analogues while inducing heat shock proteins sensitize CHO cells to thermal damage. J. Cell Physiol. 122(1), 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. 1986 The heat-shock response. A. Rev. Biochem. 55, 1151–1191.

    Article  CAS  Google Scholar 

  • Lubben, T.H., Gatenby, A.A., Donaldson, G.K., Lorimer, G.H. & Viitanen, P.V. 1990 Identification of a GroES-like chaperonin in mitochondria that facilitates protein folding. Proc. natn. Acad. Sci. U.S.A. 87, 7683–7687.

    Article  CAS  Google Scholar 

  • McMullin, T.W. & Hallberg, R.L. 1987 A normal mitochondrial protein is selectively synthesized and accumulated during heat shock in Tetrahymena thermophila. Molec. Cell Biol. 7, 4414–4423.

    PubMed  CAS  Google Scholar 

  • Mendoza, J.A., Roger, E., Lorimer, G.H. & Hoowitz, P.M. 1991 Chaperonins facilitate the in vitro folding of monomeric mitochondrial rhodanese. J. biol. Chem. 266, 13044–13049.

    PubMed  CAS  Google Scholar 

  • Mizzen, L.A., Kabiling, A. & Welch, W.J. 1991 The two mitochondrial stress proteins, grp 75 and hsp 58, transiently interact with newly synthesized proteins. Cell Regul. 2, 165–179.

    PubMed  CAS  Google Scholar 

  • Morimoto, R.I., Tissieres, A. & Georgopoulos, C. (ed.) 1990 Stress proteins in biology and medicine. (450 pages.) New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Nover, L. 1991 Heat shock response. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Ostermann, J., Horwich, A.L., Neupert, W. & Ulrich-Hartl, F. 1989 Protein folding in mitochondria requires complex formation with the hsp 60 and ATP hydrolysis. Nature, Lond. 341, 125–130.

    Article  CAS  Google Scholar 

  • Palleros, D.R., Welch, W.J. & Fink, A.L. 1991 Interaction of hsp 70 with unfolded proteins: Effects of temperature and nucleotides on the kinetics of binding. Proc. natn. Acad. Sci. U.S.A. 88, 5719–5723.

    Article  CAS  Google Scholar 

  • Park, S., Liu, G, Topping, B., Cover, W.A. & Randall, L.L. 1988 Modulation of protein folding pathways of exported proteins by the leader sequence. Science, Wash. 353, 270–273.

    Google Scholar 

  • Pelham, H.R. 1986 Speculations on the functions of the major heat shock and glucose related stress proteins. Cell 46, 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Rippman, F., Taylor, W.R., Rothbard, J. & Green, N.M. 1991 A hypothetical model for the peptide binding domain of hsp 70 based on the peptide binding domain of HLA. EMBO J. 10, 1053–1059.

    Google Scholar 

  • Prouty, W.F., Karnovsky, M.J. & Goldberg, A.L. 1985 Degradation of abnormal proteins in Escherichia coli. J. biol. Chem. 250, 1112–1118.

    Google Scholar 

  • Ritossa, F.M. 1962 A new puffing pattern induced by a temperature shock and DNP in Drosophila. Experimentia 1, 571–573.

    Google Scholar 

  • Sadis, S., Raghavendra, K. & Hightower, L.E. 1990 Secondary structure of the mammalian 70 kilodalton heat shock cognate protein analyzed by circular dichroism, spectroscopy and secondary structure prediction. Biochemistry 29, 8199–8206.

    Article  PubMed  CAS  Google Scholar 

  • Schimke, R.J. & Bradley, M.O. 1975 Properties of protein turnover in animal cells and a possible role for turnover in quality control of proteins. In Proteases and biological control (ed. E. Reich, D. B. Rifkin & E. Shaw), pp. 000–000. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Silver, L.M., Artzt, K. & Bennet, D. 1979 A major testicular cell protein specified by a mouse tT complex. Proc. natn. Acad. Sci. U.S.A. 77, 6077–6080.

    Article  Google Scholar 

  • Skowyra, D., Georgopoulos, C. & Zylicz, M. 1990 The E. coli Dnak gene product, the hsp 70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP-dependent manner. Cell 62, 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Tissieres, A., Mitchell, H.K. & Tracy, U.M. 1974 Protein synthesis in salivary glands of D. melanogaster: Relation to chromosome puffs. J. molec. Biol. 84, 389–398.

    Article  PubMed  CAS  Google Scholar 

  • Trent, J.D., Nimmesgren, E., Wall, J., Ulrich-Hartl, F. & Horwich, A.L. 1991 A molecular chaperone from a thermophilic archaebacterium is related to the eukaryotic protein t-complex polypeptide I. Nature, Lond. 354, 490–493.

    Article  CAS  Google Scholar 

  • Welch, W.J. 1990 The Mammalian stress response: cell physiology and biochemistry of stress proteins. In Stress proteins in biology and medicine (ed. R. Morimoto, A. Tissieres & C. Georgopoulos), pp. 223–278. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Welch, WJ. 1991 The role of heat shock proteins as molecular chaperones. Curr. Opin. Cell Biol. 3, 1033–1038.

    Article  PubMed  CAS  Google Scholar 

  • Welch, W.J. & Feramisco, J.R. 1985 Rapid purification of mammalian 70,000 dalton stress proteins: affinity of the proteins for nucleotides. Molec. Cell Biol. 5, 1229–1237.

    PubMed  CAS  Google Scholar 

  • Welch, W.J. & Suhan, J.P. 1986 Cellular and biochemical events in mammalian cells during and after recovery from physiological stress. J. Cell Biol. 103(5), 2035–2052.

    Article  PubMed  CAS  Google Scholar 

  • Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A., Sternlicht, M.L. & Sternlicht, H. 1992 TCPI complex is a molecular chaperone in tubulin biogenesis. Nature, Lond. 358, 245–248.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Welch, N.J. (1993). Heat shock proteins functioning as molecular chaperones: their roles in normal and stressed cells. In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics