Skip to main content

The role of heat-shock proteins in thermotolerance

  • Chapter

Summary

The role of heat-shock proteins (hsps) in thermotolerance was examined in the budding yeast Saccharomyces cerevisiae and in the fruit fly Drosophila melanogaster. In yeast cells, the major protein responsible for thermotolerance is hsp 100. In cells carrying mutations in the hsp 100 gene, HSP 104, growth is normal at both high and low temperatures, but the ability of cells to survive extreme temperatures is severely impaired. The loss of thermotolerance is apparently due to the absence of the hsp 104 protein itself because, with the exception of the hsp 104 protein, no differences in protein profiles were observed between mutant and wild-type cells. Aggregates found in mutant cells at high temperatures suggest that the cause of death may be the accumulation of denatured proteins. No differences in the rates of protein degradation were observed between mutant and wild-type cells. This, and genetic analysis of cells carrying multiple hsp 70 and hsp 104 mutations, suggests that the primary function of hsp 104 is to rescue proteins from denaturation rather than to degrade them once they have been denatured. Drosophila cells do not produce a protein in the hsp 100 class in response to high temperatures. In this organism, hsp 70 appears to be the primary protein involved in thermotolerance. Thus, the relative importance of different hsps in thermotolerance changes from organism to organism.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Carper, S.W., Duffy, J.J. & Gerner, E.W. 1987 Heat shock proteins in thermotolerance and other cellular processes. Cancer Res. 47, 5249–5255.

    PubMed  CAS  Google Scholar 

  • Craig, E.A. & Jacobsen, K. 1984 Mutations of the heat inducible 70 kilodalton genes of yeast confer temperature sensitive growth. Cell 38, 841–849.

    Article  PubMed  CAS  Google Scholar 

  • Craig, E.A. & McCarthy, B.J. 1980 Four Drosophila heat shock genes at 67B: characterization of recombinant plasmids. Nucl. Acids Res. 8, 4441–4457.

    Article  PubMed  CAS  Google Scholar 

  • Daufeldt, J.A. & Harrison, H.H. 1984 Quality control and technical outcome of two-dimensional electrophoresis in a clinical laboratory setting. Clin. Chem. 30, 1972–1980.

    PubMed  CAS  Google Scholar 

  • Etyan, E., Ganoth, D., Armon, T. & Hershko, A. 1989 ATP-dependent incorporation of 20S protease into the 26S complex that degrades proteins conjugated to ubiquitin. Proc. natn. Acad. Sci. U.S.A. 86, 7751–7755.

    Article  Google Scholar 

  • Feder, J.H., Rossi, J.M., Solomon, J., Solomon, N. & Lindquist, S. 1992 The consequences of expressing hsp 70 in Drosophila cells at normal temperatures. Genes Dev. 6, 1402–1413.

    Article  PubMed  CAS  Google Scholar 

  • Finley, D., Ozkaynak, E. & Varshavsky, A. 1987 The yeast polyubiquitin gene is essential for resistance to high temperatures, starvation, and other stresses. Cell 48, 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  • Georgopoulos, C. 1992 The emergence of the chaperone machines. Trends Biochem. Sci. 17, 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Gething, M.-J. & Sambrook, J. 1992 Protein folding in the cell. Nature, Lond. 355, 33–45.

    Article  CAS  Google Scholar 

  • Golic, K.G. & Lindquist, S. 1989 The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59, 499–509.

    Article  PubMed  CAS  Google Scholar 

  • Gottesman, S., Squires, C, Pichersky, E., Carrington, M., Hobbs, M., Mattick, J.S., Dalrymple, B., Kuramitsu, H., Shiroza, T. & Foster, T. 1990 Conservation of the regulatory subunit for the Clp ATP-dependent protease in prokaryotes and eukaryotes. Proc. natn. Acad. Sci. U.S.A. 87, 3513–3517.

    Article  CAS  Google Scholar 

  • Katayama, Y., Gottesman, S., Pumphery, J., Rudikoff, S., Clarkand, W.P. & Maurizi, M.R. 1988 The two-component, ATP-dependent Cip protease of Escherichia coli. J. biol. Chem. 263, 15226–15236.

    PubMed  CAS  Google Scholar 

  • Kitagawa, M., Wada, C, Yoshioka, S. & Yura, T. 1991 Expression of ClpB, an analog of the ATP-dependent protease regulatory subunit in Escherichia coli, is controlled by a heat shock σ factor (σ32). J. Bacteriol. 173, 4247–4253.

    PubMed  CAS  Google Scholar 

  • Lindquist, S. 1980 Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev. Biol. 77, 463–479.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. 1986 The heat-shock response. A. Rev. Biochem. 55, 1151–1191.

    Article  CAS  Google Scholar 

  • Lindquist, S. & Craig, E.A. 1986 The heat-shock proteins. A. Rev. Genet. 22, 631–677.

    Article  Google Scholar 

  • Nover, L. 1991 Heat shock response, 1st edn. Boca Raton, Florida: CRC Press.

    Google Scholar 

  • Parsell, D.A., Sanchez, Y., Stitzel, J.D. & Lindquist, S. 1991 Hsp 104 is a highly conserved protein with two essential nucleotide-binding sites. Nature, Lond. 353, 270–273.

    Article  CAS  Google Scholar 

  • Pelham, H.R. 1986 Speculations on the functions of the major heat shock and glucose-regulated proteins. Cell 46, 959–961.

    Article  PubMed  CAS  Google Scholar 

  • Sanchez, Y. & Lindquist, S.L. 1990 HSP 104 required for induced thermotolerance. Science, Wash. 248, 1112–1115.

    Article  CAS  Google Scholar 

  • Sanchez, Y., Taulien, J., Borkovich, K. & Lindquist, S.L. 1990 Hsp 104 is required for tolerance to many forms of stress. Science, Wash. 248, 1112–1115.

    Article  CAS  Google Scholar 

  • Sanchez, Y., Parsell, D.A., Taulien, J., Vogel, Craig, E.A. & Lindquist, S.L. 1993 Genetic evidence for a functional relationship between hsp 104 and hsp 70. (In preparation.)

    Google Scholar 

  • Seufert, W. & Jentsch, S. 1990 Ubiquitin-conjugating enzymes UBC4 and UBC5 mediate selective degradation of short-lived and abnormal proteins. EMBO J. 9, 543–550.

    PubMed  CAS  Google Scholar 

  • Solomon, J.M., Rossi, J.M., Golic, K., McGarry, T. & Lindquist, S. 1991 Changes in Hsp 70 Alter Thermotolerance and Heat-Shock Regulation in Drosophila. New Biol. 3, 1106–1120.

    PubMed  CAS  Google Scholar 

  • Squires, C.L., Pedersen, S., Ross, B.M. & Squires, C. 1991 ClpB is the Escherichia coli heat shock protein F84.1. J. Bacteriol. 173, 4254–4262.

    PubMed  CAS  Google Scholar 

  • Welte, M.A., Tetrault, J. & Lindquist, S. 1993 A new method for manipulating transgenes: improving thermotolerance in Drosophila embryos. (In preparation.)

    Google Scholar 

  • Werner, W.M., Stone, D.E. & Craig, E.A. 1987 Complex interactions among members of an essential subfamily of hsp 70 genes in Saccharomyces cerevisiae. Molec. Cell Biol. 7, 2568–2577.

    Google Scholar 

  • Zimmerman, J.L. & Cohill, P.R. 1991 Heat shock and thermotolerance in plant and animal embryogenesis. New Biol 3, 641–650.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Parsell, D.A., Taulien, J., Lindquist, S. (1993). The role of heat-shock proteins in thermotolerance. In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics