Skip to main content

Tumour suppressor genes and molecular chaperones

  • Chapter
  • 184 Accesses

Summary

The two tumour suppressor genes that are most commonly inactivated in human cancer are the p53 gene on chromosome 17 and the retinoblastoma (Rb) gene on chromosome 11. Recent studies of both gene products suggest that they are able to act as powerful negative regulators of cell division. The Rb gene seems to exert this activity by physically complexing to a variety of specific transcription factors and inactivating their function. The capacity of Rb protein to bind these factors is regulated by phosphorylation. The Rb protein can therefore be seen to act as a chaperone for these factors. The p53 protein also may act in part by regulating transcription but may also interact directly with the DNA replication apparatus. The growth suppressive function of p53 is induced by DNA damage leading to an attractive model of p53 as an essential checkpoint control. The p53 protein interacts with members of the hsp70 chaperone family which we now show can regulate its function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bartek, J., Iggo, R., Gannon, J. & Lane, D.P. 1990 Genetic and immunochemical analysis of mutant p53 in human breast cancer cell lines. Oncogene 5, 893–899.

    PubMed  CAS  Google Scholar 

  • Braithwaite, A.W., Sturzbecher, H.-W., Addison, C., Palmer, C., Rudge, K. & Jenkins, J.R. 1987 Mouse p53 inhibits SV40 origin-dependent DNA replication. Nature, Lond. 329, 458–460.

    Article  CAS  Google Scholar 

  • Chellappan, S.P., Hiebert, S., Mudryj, M., Horowitz, J.M. & Nevins, J.R. 1991 The E2F transcription factor is a cellular target for the RB protein. Cell 65, 1053–1061.

    Article  PubMed  CAS  Google Scholar 

  • Chittenden, T., Livingston, D.M. & Kaelin, W.G.J. 1991 The T/E1A-binding domain of the retinoblastoma product can interact selectively with a sequence-specific DNA-binding protein. Cell 65, 1073–1082.

    Article  PubMed  CAS  Google Scholar 

  • El-Deiry, W.S., Kern, S.E., Pietenpol, J.A., Kinzler, K.W. & Vogelstein, B. 1992 Definition of a consensus binding site for p53. Nature Genet. 1, 45–49.

    Article  PubMed  CAS  Google Scholar 

  • Gannon, J.V., Greaves, R., Iggo, R. & Lane, D.P. 1990 Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 9, 1595–1602.

    PubMed  CAS  Google Scholar 

  • Gannon, J.V. & Lane, D.P. 1991 Protein synthesis required to anchor a mutant p53 protein which is temperature-sensitive for nuclear transport. Nature, Lond. 349, 802–806.

    Article  CAS  Google Scholar 

  • Hainaut, P. & Milner, J. 1992 Interactions of heat-shock protein 70 (hsp 70) with p53 translated in vitro: evidence for a role in the regulation of p53 conformation. EMBO J. 11, 3513–3520.

    PubMed  CAS  Google Scholar 

  • Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C.C. 1991 p53 mutations in human cancers. Science, Wash. 253, 49–53.

    Article  CAS  Google Scholar 

  • Hu, Q., Lees, J.A., Buchkovich, K.J. & Harlow, E. 1992 The retinoblastoma protein physically associates with the human cdc2 kinase. Molec. cell. Biol. 12, 971–980.

    PubMed  CAS  Google Scholar 

  • Hupp, T.R., Meek, D.W., Midgley, C.A. & Lane, D.P. 1992 Regulation of the specific DNA binding function of p53. Cell 71, 875–886.

    Article  PubMed  CAS  Google Scholar 

  • Kastan, M.B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R.W. 1991 Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51, 6304–6311.

    PubMed  CAS  Google Scholar 

  • Knudson, A.G. Jr 1971 Mutation and cancer: statistical study of retinoblastoma. Proc. natn. Acad. Sci. U.S.A. 68, 820–823.

    Article  Google Scholar 

  • Kuerbitz, S.J., Plunkett, B.S., Walsh, W.V. & Kastan, M.B. 1992 Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. natn. Acad. Sci. U.S.A. 89, 7491–7495.

    Article  CAS  Google Scholar 

  • Lane, D. & Benchimol, S. 1990 p53: oncogene or antioncogene? Genes Dev. 4, 1–8.

    Article  Google Scholar 

  • Lane, D.P. 1992 p53, guardian of the genome. Nature, Lond. 358, 15–16.

    Article  CAS  Google Scholar 

  • Lee, W.-H., Shew, J.-Y., Hong, F.D., Sery, T.W., Donoso, L.A., Young, L.-J., Bookstein, R. & Lee, E.Y.-H.P. 1987 The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature, Lond. 329, 642–645.

    Article  CAS  Google Scholar 

  • Levine, A.J. & Momand, J. 1990 Tumor suppressor genes: the p53 and retinoblastoma sensitivity genes and gene products. Biochim. biophys. Acta 1032, 119–136.

    PubMed  CAS  Google Scholar 

  • Lu, X., Park, S.H., Thompson, T.C. & Lane, D.P. 1992 ras-induced hyperplasia occurs with mutation of p53, but an activated ras and myc together can induce carcinoma without p53 mutation. Cell 70, 153–161.

    Article  PubMed  CAS  Google Scholar 

  • Ludlow, J.W., DeCaprio, J.A., Huang, C.-M., Lee, W.-H., Paucha, E. & Livingston, D.M. 1989 SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Malkin, D., Li, F.P., Strong, L.C., Fraumeni, J.F.J., Nelson, C.E., Kim, D.H., Kassel, J., Gryka, M.A., Bischoff, F.Z., Tainsky, M.A. & Friend, S.H. 1990 Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, Wash, 250, 1233–1238.

    Article  CAS  Google Scholar 

  • Maltzman, W. & Czyzyk, L. 1984 UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Molec. cell. Biol. 4, 1689–1694.

    PubMed  CAS  Google Scholar 

  • Martin, H.M., Filipe, M.I., Morris, R.W., Lane, D.P. & Silvestre, F. 1992 p53 expression and prognosis in gastric carcinoma. Int. J. Cancer 50, 859–862.

    Article  PubMed  CAS  Google Scholar 

  • Midgley, C.A., Fisher, C.J., Bartek, J., Vojtesek, B., Lane, D.P. & Barnes, D.M. 1992 Analysis of p53 expression in human tumours: an antibody raised against human p53 expressed in E. coli. J. Cell Sci. 101, 183–189.

    PubMed  CAS  Google Scholar 

  • Pinhasi-Kimhi, O., Michalovitz, D., Ben-Ze’ev, A. & Oren, M. 1986 Specific interaction between the p53 cellular tumor antigen and major heat shock proteins. Nature, Lond. 320, 182–185.

    Article  CAS  Google Scholar 

  • Scott, J.K. & Smith, G.P. 1990 Searching for peptide ligands with an epitope library. Science, Wash. 249, 386–390.

    Article  CAS  Google Scholar 

  • Srivastava, S., Zou, Z., Pirollo, K., Blattner, W. & Chang, E.H. 1990 Germ-line transmission of a mutated p53 gene in a cancer prone family with Li-Fraumeni syndrome. Nature, Lond. 348, 747–749.

    Article  CAS  Google Scholar 

  • Stephen, C.W. & Lane, D.P. 1992 Mutant conformation of p53: precise epitope mapping using a filamentous phage epitope library. J. molec. Biol. 225, 577–583.

    Article  PubMed  CAS  Google Scholar 

  • Sturzbecher, H.-W., Brain, R., Maimets, T., Addison, C., Rudge, K. & Jenkins, J.R. 1988 Mouse p53 blocks SV40 DNA replication in vitro and downregulates T antigen DNA helicase activity. Oncogene 3, 405–413.

    PubMed  CAS  Google Scholar 

  • Sturzbecher, H.-W., Chumakov, P., Welch, W.J. & Jenkins, J.R. 1987 Mutant p53 proteins bind hsp 72/73 cellular heat-shock-related proteins in SV40-transformed monkey cells. Oncogene 1, 201–211.

    PubMed  CAS  Google Scholar 

  • Templeton, D.J., Park, S.H., Lanier, L. & Weinberg, R.A. 1991 Nonfunctional mutants of the retinoblastoma protein are characterized by defects in phosphorylation, viral oncoprotein association, and nuclear tethering. Proc. natn. Acad. Sci. U.S.A. 88, 3033–3037.

    Article  CAS  Google Scholar 

  • Thor, A.D., Moore, D.H., Edgerton, S.M., Kawasaki, E.S., Reihsaus, E., Lynch, H.T., Marcus, J.N., Schwartz, L., Chen, L.-C., Mayall, B.H. & Smith, H.S. 1992 Accumulation of p53 tumor suppressor gene protein is an independent marker of prognosis in breast cancers. J. natn. Cancer Inst. 84, 845–855.

    Article  CAS  Google Scholar 

  • Vogelstein, B. & Kinzler, K.W. 1992 p53 function and dysfunction. Cell 70, 523–526.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lane, D.P., Midgley, C., Hupp, T. (1993). Tumour suppressor genes and molecular chaperones. In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics