Skip to main content

The role of molecular chaperones in protein transport into the endoplasmic reticulum

  • Chapter
  • 185 Accesses

Summary

In eukaryotic cells export of the vast majority of newly synthesized secretory proteins is initiated at the level of the membrane of the endoplasmic reticulum (microsomal membrane). The precursors of secretory proteins are not transported across the microsomal membrane in their native state. Typically, signal peptides in the precursor proteins are involved in preserving the transport-competent state. Furthermore, there are two alternatively acting mechanisms involved in preserving transport competence in the cytosol. The first mechanism involves two ribonucleoparticles (ribosome and signal recognition particle) and their receptors on the microsomal surface and requires the hydrolysis of GTP. The second mechanism does not involve ribonucleoparticles and their receptors but depends on the hydrolysis of ATP and on cis-acting molecular chaperones, such as heat shock cognate protein 70 (hsc 70). In both mechanisms a translocase in the microsomal membrane mediates protein translocation. This translocase includes a signal peptide receptor on the cis-side of the microsomal membrane and a component that also depends on the hydrolysis of ATP. At least in certain cases, an additional nucleoside triphosphate-requiring step is involved which is related to the trans-acting molecular chaperone BiP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amaya, Y., Nakano, A., Ito, K. & Mori, M. 1990 Isolation of a yeat gene, SRH1, that encodes a homologue of the 54k subunit of mammalian signal recognition particle. J. Biochem. 107, 457–463.

    PubMed  CAS  Google Scholar 

  • Buchner, J., Schmidt, M., Fuchs, M., Jaenicke, R., Rudolph, R., Schmid, F.X. & Kiefhaber, T. 1991 GroE facilitates refolding of citrate synthase by suppressing aggregation. Biochemistry 30, 1586–1591.

    Article  PubMed  CAS  Google Scholar 

  • Caplan, A J. & Douglas, M.G. 1991 Characterization of YDJ1: a yeast homologue of the bacterial DnaJ protein. J. Cell Biol. 114, 609–621.

    Article  PubMed  CAS  Google Scholar 

  • Chirico, W.J., Waters, G.M. & Blobel, G. 1988 70K heat shock related proteins stimulate protein translocation into microsomes. Nature, Lond. 332, 805–810.

    Article  CAS  Google Scholar 

  • Connolly, T. & Gilmore, R. 1989 The signal recognition particle receptor mediates the GTP-dependent displacement of SRP from the signal sequence of the nascent polypeptide. Cell 57, 599–610.

    Article  PubMed  CAS  Google Scholar 

  • Connolly, T., Rapiejko, P.J. & Gilmore, R. 1991 Requirement of GTP hydrolysis for dissociation of the signal recognition particle from its receptor. Science, Wash. 252, 1171–1173.

    Article  CAS  Google Scholar 

  • Courtneidge, S.A. & Bishop, J.M. 1982 Transit of pp60v-src to the plasma membrane. Proc. natn. Acad. Sci. U.S.A. 79, 7117–7121.

    Article  CAS  Google Scholar 

  • Dalman, F.C., Bresnick, E.H., Patel, P.D., Perdew, G.H., Watson Jr, S.J. & Pratt, W.B. 1989 Direct evidence that the glucocorticoid receptor binds to hsp 90 at or near the termination of receptor translation in vitro. J. biol. Chem. 264, 19815–19821.

    PubMed  CAS  Google Scholar 

  • Deshaies, R.J. & Schekman, R. 1987 A yeast mutant defective at an early stage in import of secretory protein precursors into the endoplasmic reticulum. J. Cell Biol. 105, 633–645.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R.J. & Schekman, R. 1989 Sec62 encodes a putative membrane protein required for protein translocation into the yeast endoplasmic reticulum. J. Cell Biol. 109, 2653–2664.

    Article  PubMed  CAS  Google Scholar 

  • Deshaies, R.J., Koch, B.D., Werner-Washburne, M., Craig, E.A. & Schekman, R. 1988 A subfamily of stress proteins facilitates translocation of secretory and mitochondrial precursor polypeptides. Nature, Lond. 332, 800–805.

    Article  CAS  Google Scholar 

  • Ellis, R.J. & van der Vies, S.M. 1991 Molecular chaper-ones. A. Rev. Biochem. 60, 321–347.

    Article  CAS  Google Scholar 

  • Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.-H. & Cowan, N.J. 1992 A cytoplasmic chaperonin that catalyzes β-actin folding. Cell 69, 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Hann, B.C., Poritz, M.A. & Walter, P. 1989 Saccharomyces cerevisiae and Schizosaccharomyces pombe contain a homologue to the 54-kD subunit of the signal recognition particle that in S. cerevisiae is essential for growth. J. Cell Biol. 109, 3223–3235.

    Article  PubMed  CAS  Google Scholar 

  • Hann, B.C., Stirling, C.J. & Walter, P. 1992 Sec65 gene product is a subunit of the yeast signal recognition particle required for its integrity. Nature, Lond. 356, 532–533.

    Article  CAS  Google Scholar 

  • Hann, B.C. & Walter, P. 1991 The signal recognition particle in S. cerevisiae. Cell 67, 131–144.

    Article  PubMed  CAS  Google Scholar 

  • Klappa, P., Mayinger, P., Pipkorn, R., Zimmermann, M. & Zimmermann, R. 1991 A microsomal protein is involved in ATP-dependent transport of presecretory proteins into mammalian microsomes. EMBO J. 10, 2795–2803.

    PubMed  CAS  Google Scholar 

  • Klappa, P., Zimmermann, M., Dierks, T. & Zimmermann, R. 1992 Components and mechanisms involved in the transport of proteins into the endoplasmic reticulum. Subcell. Biochem. (In the press.)

    Google Scholar 

  • Lauffer, L., Garcia, P.D., Harkins, R.N., Coussens, L., Ullrich, A. & Walter, P. 1985 Topology of signal recognition particle receptor in the endoplasmic reticulum membrane. Nature, Lond. 318, 334–338.

    Article  CAS  Google Scholar 

  • Lewis, V.A., Hynes, G.M., Zheng, D., Saibil, H. & Willison, K. 1992 T complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol. Nature, Lond. 358, 249–252.

    Article  CAS  Google Scholar 

  • Lütcke, H., High, S., Römisch, K., Ashford, A.J. & Dobberstein, B. 1992 The methionine-rich domain of the 54 kDa subunit of signal recognition particle is sufficient for the interaction with signal sequences. EMBO J. 11, 1543–1551.

    PubMed  Google Scholar 

  • Luke, M.M., Sutton, A. & Arndt, K.T. 1991 Characterization of SIS1, a Saccharomyces cerevisiae homologue of bacterial DnaJ proteins. J. Cell Biol. 114, 623–638.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D.I. & Dobberstein, B. 1980a A membrane component essential for vectorial translocation of nascent proteins across the endoplasmic reticulum: Requirements for its extraction and reassociation with the membrane. J. Cell Biol. 87, 498–502.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, D.I. & Dobberstein, B. 1980b Identification and characterization of a membrane component essential for the translocation of nascent proteins across the membrane of the endoplasmic reticulum. J. Cell Biol. 87, 503–508.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C.V. & Blobel, G. 1990 Assembly of translocation competent proteoliposomes from detergent-solubilized rough microsomes. Cell 60, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Nicchitta, C.V., Migliaccio, G. & Blobel, G. 1991 Biochemical fractionation and assembly of the membrane components that mediate nascent chain targeting and translocation. Cell 65, 587–598.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T.H., Law, D.T.S. & Williams, D.B. 1991 Binding protein BiP is required for translocation of secretory proteins into the endoplasmic reticulum in Saccharomyces cerevisiae. Proc. natn. Acad. Sci. U.S.A. 88, 1565–1569.

    Article  CAS  Google Scholar 

  • Perara, E., Rothman, R.E. & Lingappa, V.R. 1986 Uncoupling translocation from translation: implications for transport of proteins across membranes. Science, Wash. 232, 348–352.

    Article  CAS  Google Scholar 

  • Poritz, M.A., Siegel, V., Hansen, W. & Walter, P. 1988 Small ribonucleoproteins in Schizosaccharomyces pombe and Yarrowia lipolytica homologous to signal recognition particle. Proc. natn. Acad. Sci. U.S.A. 85, 4315–4319.

    Article  CAS  Google Scholar 

  • Rapiejko, P.J. & Gilmore, R. 1992 Protein translocation across the ER requires a functional GTP binding site in the α subunit of the signal recognition particle receptor. J. Cell Biol. 117, 493–503.

    Article  PubMed  CAS  Google Scholar 

  • Ribes, V., Dehaux, P. & Tollervey, D. 1988 7SL RNA from Schizosaccharomyces pombe is encoded by a single copy essential gene. EMBO J. 7, 231–237.

    PubMed  CAS  Google Scholar 

  • Römisch, K., Webb, J., Lingelbach, K., Gausepohl, H. & Dobberstein, B. 1990 The 54-kD protein of signal recognition particle contains a methionine-rich RNA binding domain. J. Cell Biol. 111, 1793–1802.

    Article  PubMed  Google Scholar 

  • Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J. & Silver, P. 1989 A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109, 2665–2675.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, S.L., Whitfield, K.M., Vogel, J.P., Rose, M.D. & Schekman, R. 1992 Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell 69, 353–365.

    Article  PubMed  CAS  Google Scholar 

  • Schlenstedt, G., Gudmundsson, G.H., Boman, H.G. & Zimmermann 1990 A large presecretory protein translocates both cotranslationally, using signal recognition particle and ribosome, and posttranslationally, without these ribonucleoparticles, when synthesized in the presence of mammalian microsomes. J. biol. Chem. 265, 13960–13968.

    PubMed  CAS  Google Scholar 

  • Stirling, C.J. & Hewitt, E.W. 1992 The S. cerevisiae Sec65 gene encodes a component of yeast signal recognition particle with homology to human SRP19. Nature, Lond. 356, 534–537.

    Article  CAS  Google Scholar 

  • Tajima, S., Lauffer, L., Rath, V.L. & Walter, P. 1986 The signal recognition particle receptor is a complex that contains two distinct polypeptide chains. J. Cell Biol. 103, 1167–1178.

    Article  PubMed  CAS  Google Scholar 

  • Toyn, J., Hibbs, A.R., Sanz, P., Crowe, J. & Meyer, D.I. 1988 In vivo and in vitro analysis of ptll, a yeast ts mutant with a membrane associated defect in protein translocation. EMBO J. 7, 4347–4353.

    PubMed  CAS  Google Scholar 

  • Vogel, J.P., Misra, L.M. & Rose, M.D. 1990 Loss of BiP/GRP78 function blocks translocation of secretory proteins in yeast. J. Cell Biol. 110, 1885–1895.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P. & Blobel, G. 1981a Translocation of proteins across the endoplasmic reticulum. II. Signal recognition protein, SRP, mediates the selective binding to microsomal membranes of in vitro-assembled polysomes synthesizing secretory protein. J. Cell Biol. 91, 551–556.

    Article  PubMed  CAS  Google Scholar 

  • Walter, P. & Blobel, G. 1981b Translocation of proteins across the endoplasmic reticulum. III. Signal recognition protein, SRP, causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J. Cell Biol. 91, 557–561.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Buchner, J., Zimmermann, R. & Jakob, U. 1992 Hsp 90 chaperones protein folding in vitro. Nature, Lond. 358, 169–170.

    Article  CAS  Google Scholar 

  • Wiech, H., Buchner, J., Zimmermann, M., Zimmermann, R. & Jakob, U. 1993 Hsc 70, BiP and Hsp 90 differ in their ability to stimulate transport of precursor proteins into mammalian microsomes. J. biol. Chem. (In the press.)

    Google Scholar 

  • Wiech, H., Klappa, P. & Zimmermann, R. 1991 Protein export in prokaryotes and eukaryotes. FEBS Lett. 285, 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Wiech, H., Sagstetter, M., Müller, G. & Zimmermann, R. 1987 The ATP requiring step in assembly of M13 procoat protein into microsomes is related to preservation of transport competence of the precursor protein. EMBO J. 6, 1011–1016.

    PubMed  CAS  Google Scholar 

  • Wiech, H., Stuart, R. & Zimmermann, R. 1990 Role of cytosolic factors in the transport of proteins across membranes. Semin. Cell Biology 1, 55–63.

    CAS  Google Scholar 

  • Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, M.L. & Sternlicht, H. 1992 TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature, Lond. 358, 245–248.

    Article  CAS  Google Scholar 

  • Yu, Y., Zhang, Y., Sabatini, D.D. & Kreibich, G. 1989 Reconstitution of translocation-competent vesicles from detergent-solubilized dog pancreas microsomes. Proc. natn. Acad. Sci. U.S.A. 86, 9931–9935.

    Article  CAS  Google Scholar 

  • Zimmerman, D.L. & Walter, P. 1990 Reconstitution of protein translocation activity from partially solubilized microsomal vesicles. J. biol. Chem. 265, 4048–4053.

    PubMed  CAS  Google Scholar 

  • Zimmermann, R., Sagstetter, M., Lewis, M.J. & Pelham, H.R.B. 1988 Seventy kilodalton heat shock proteins and an additional component from reticulocyte lysate stimulate import of M13 procoat protein into microsomes. EMBO J. 7, 2875–2880.

    PubMed  CAS  Google Scholar 

  • Zopf, D., Bernstein, H.D., Johnson, A.E. & Walter, P. 1990 The methionine-rich domain of the 54 kd protein subunit of the signal recognition particle contains an RNA binding site and can be crosslinked to a signal sequence. EMBO J. 9, 4511–4517.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dierks, T., Klappa, P., Wiech, H., Zimmerman, R. (1993). The role of molecular chaperones in protein transport into the endoplasmic reticulum. In: Ellis, R.J., Laskey, R.A., Lorimer, G.H. (eds) Molecular Chaperones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2108-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2108-8_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4935-1

  • Online ISBN: 978-94-011-2108-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics