Skip to main content

Impulse Analysis of Fractal and Multifractal Structure of the Field of Derivatives in Turbulent flows

  • Chapter
Eddy Structure Identification in Free Turbulent Shear Flows

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 21))

  • 280 Accesses

Summary

A relation between power law spectrum of fluctuations of velocity derivatives and fractal dimensions of corresponding surfaces is obtained in the inertial range. It is shown that two values of surface fractal dimensions correspond to a single spectral power law. Good agree ment with experimental data is obtained for Kolmogorov turbulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.R. Sreenivasan, Fractals and multifractals in fluid turbulence, Annu. Rev. Fluid Mech. 23, 539 (1991).

    Article  MathSciNet  Google Scholar 

  2. P. Constantin, I. Procaccia and K.R. Sreenivasan, Fractal geometry of isoscalar sur faces in turbulence; theory and experiments, Phys. Rev. Lett., 67, 1739 (1991).

    Article  Google Scholar 

  3. A. Bershadskii and A. Tsinober, Asymptotic fractal and multifractal properties of turbulent dissipative fields, Phys. Lett., A165, 37 (1992).

    Google Scholar 

  4. J.C. Vassilicos and J.C.R. Hunt, Fractal dimensions and spectra of interfaces with application to turbulence, Proc. Royal Soc. Lond. A435, 505 (1991).

    Article  MathSciNet  Google Scholar 

  5. R. Kraichnan, Fractal geometry of isoscalar surfaces in turbulence, Phys. Rev. Lett.,67, 3634 (1991).

    Article  Google Scholar 

  6. A.J. Chorin, Equilibrium statistics of a vortex filament with applications, Commun.Math. Phys. 141, 619 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Tsinober, E. Kit and T. Dracos, Experimental investigation of the field of velo city gradients in turbulent flows, J. Fluid Mech., in press (1992).

    Google Scholar 

  8. K.R. Sreenivasan and C. Meneveau, The fractal facets of turbulence, J. Fluid Mech.,172, 357 (1986).

    Article  MathSciNet  Google Scholar 

  9. C. Meneveau and K.R. Screenivasan, The multifractal spectrum of the dissipation field in turbulent flows, Nuclear Phys. B. (Proc. Suppl.) 2, 49 (1987).

    Google Scholar 

  10. D. Middleton, An introduction to statistical communication theory (N.Y. McGraw-Hill, 1960).

    Google Scholar 

  11. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, V.2 (MIT Press,Cambridge, MA, 1975).

    Google Scholar 

  12. C. Meneveau and K.R. Sreenivasan, The multifractal nature of turbulent energy dissipation, J. Fluid Mech. 224, 429 (1991).

    Article  MATH  Google Scholar 

  13. R.R. Prasad and K.R. Sreenivasan, The measurement and interpretation of fractal dimensions of surfaces in turbulent flows, Phys. Fluids A2, 792 (1990).

    Google Scholar 

  14. M.Z. Kholmyansky, Measurments of turbulent microfluctuations of the wind-velocity derivative in the surface layer, Atmosph. and Oceanic Phys. 8, 472 (1972).

    Google Scholar 

  15. The authors are grateful to M.Z. Kholmyansky for this information and for fruitful discussions of his experiments.

    Google Scholar 

  16. T. Nakano, Generalized dimensions of three-dimensional turbulence, Phys. Lett.A140, 395 (1989).

    Google Scholar 

  17. B. Mandelbrot, On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars, J. Fluid Mech., 72, 401 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  18. R.A. Antonia, B.R. Satyaprakash and F. Hussain, Statistics of fine-scale velocity in turbulent plane and circular jets, J. Fluid Mech. 119, 55 (1982).

    Article  Google Scholar 

  19. I. Hosokawa and K. Yamamoto, Evidence against the Kolmogorov refined similarity hypothesis, Phys. Fluids A4, 457 (1992).

    MathSciNet  Google Scholar 

  20. A. Tsinober, Some properties of velocity derivatives in turbulent flows as obtained from experiments (laboratory and numerical), to be published in the Proccedings ofthe Les Houches School on Turbulence in Spatially Extended Systems, Les Houches, France, Jan. 20–31, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bershadskii, A., Tsinober, A. (1993). Impulse Analysis of Fractal and Multifractal Structure of the Field of Derivatives in Turbulent flows. In: Bonnet, J.P., Glauser, M.N. (eds) Eddy Structure Identification in Free Turbulent Shear Flows. Fluid Mechanics and Its Applications, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2098-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2098-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4930-6

  • Online ISBN: 978-94-011-2098-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics