Skip to main content

A comparison of different analytical techniques for identifying structures in turbulence

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 21))

Abstract

Vortical structures play an important role in the kinematics and dynamics of turbulence, but in order to understand this role we require techniques to identify and classify them. Proper Orthogonal Decomposition (POD), conditional sampling with ensemble statistics, and conditional sampling with conditional statistics are applied to a simple test function and the results are compared to determine the strengths and weaknesses of each approach. The second method gives the closest approximation to the test signal and is the easiest to use, although it is sensitive to the choice of conditions. None of these techniques can give much insight into the dynamics of turbulence, or into the organisation of eddies with complex, fine-scale structure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ADRIAN, R.J. & MOIN, P. 1988 Stochastic estimation of organised turbulent structure: homogeneous shear flow. J. Fluid Mech., 190, 531–559.

    Article  MATH  Google Scholar 

  • ARFKEN, G. 1985 Mathemaiieal methods for physicists. Orlando: Academic Press.

    Google Scholar 

  • ARNÉODO, A., ARGOUL, F., BACRY, E., ELEZGARAY, J., FREYSZ, E., GRASSEAU, G., MUZY,J.F., & POULIGNY, B. 1989 Wavelet transform of fractals. In Wavelets and some of their applications, proceedings of the conference held in Marseille-Luminy, June 1989.

    Google Scholar 

  • AUBRY, N., HOLMES, P., LUMLEY, J.L. & STONE, E. 1988 The dynamics of coherent structures in the wall region of a turbulent boundary layer. J. Fluid Mech. 192, 115–173.

    Article  MathSciNet  MATH  Google Scholar 

  • BRASSEUR, J.G. & WANG, Q. 1992 Structural evolution of intermittency and anisotropy at different scales analysed using three-dimensional wavelet transforms. Phys. Fluids A. 4(11), 2538–54.

    Article  MATH  Google Scholar 

  • CHEN, J.H., CHONG, M.S., SORIA, J., SONDERGAARD, R., PERRY, A.E., ROGERS, M., MOSER,R., & CANTWELL, B.J. 1990 A study of the topology of dissipating motions in direct numerical simulations of time-developing compressible and incompressible mixing layers. In Studying turbulence using numerical simulation databases -III, Proceedings of the 1990 summer program.Stanford: CTR.

    Google Scholar 

  • FALCONER, K. 1990 Fractal geometry—mathematical foundations and applications. John Wiley & Sons.

    Google Scholar 

  • FARGE, M. 1992 The wavelet transform. In Ann. Rev. Fluid. Mech. 23.

    Google Scholar 

  • FRISCH, U., SULEM, P.-L. & NELKIN, M. 1978 A simple dynamical model of intermittent fully developed turbulence. J. Fluid Mech. 87(4), 719–736.

    Article  MATH  Google Scholar 

  • GROSSMAN, A. & MORLET, J. 1984 Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal. 15, 723–736.

    Article  MathSciNet  Google Scholar 

  • HUNT, J.C.R., KEVLAHAN, N.K.-R., VASSILICOS, J.C. & FARGE, M. 1993 Wavelets, fractals and Fourier transforms: detection and analysis of structure. To appear in: Wavelets, fractals and Fourier transforms: new developments and new applications, proceedings of the IMA conference at Newnham College, Cambridge, December 16–18,1990.

    Google Scholar 

  • HUNT, J.C.R. & J.C. VASSILICOS. 1991 Kolmogorov’scontributions to the physical and geometrical understanding of small-scale turbulence and recent developments. Proc. R. Soc. Lond. A., 434,183–210.

    Article  MATH  Google Scholar 

  • HUSSAIN, A.K.M.F. 1986 Coherent structures and turbulence. J. Fluid Mech., 173, 303–356.

    Article  Google Scholar 

  • LUMLEY, J.L. 1967 The structure of inhomogeneous turbulent flows. In Proceedings of the international colloquium on the fine structure of the atmosphere and its influence on radio wave propagation, Moscow, June 15–22, 1965, eds. A.K. Yaglom & U.I. Tatarsky. Nauka: Moscow,166–176.

    Google Scholar 

  • LUNDGREN, T.S. 1982 Strained spiral vortex model for turbulent fine structure. Phys. Fluids. 25(12), 2193–2203.

    Article  MATH  Google Scholar 

  • MOFFATT, H.K. 1984 Simple topological aspects of turbulent vorticity dynamics. In Turbulence and chaotic phenomena in fluids ed. T. Tatsumi. Elsevier, 223.

    Google Scholar 

  • MUMFORD, J.C. 1982 The structure of the large eddies in fully developed turbulent shear flows. Part 1. The plane jet. J. Fluid Mech., 118, 241–268.

    Article  Google Scholar 

  • OREY, S. 1970 Gaussian sample functions and the Hausdorff dimension of a level crossing. Z. Wahrscheinlichkeitstheorie verw. Geb. 15, 249.

    Article  MathSciNet  MATH  Google Scholar 

  • OSBORNE, A.R. & PROVENZALE, A. 1989 Finite correlation dimension for stochastic systems with power-law spectra. Physica D, 357–381.

    Google Scholar 

  • PROCACCIA, I., BRANDENBURG, A., JENSEN, M. & VINCENT, A. 1991 The fractal dimension of isovorticity structures in 3-dimensional turbulence. NORDITA preprint (submitted to Europhys.Lett.).

    Google Scholar 

  • VASSILICOS, J.C. & HUNT, J.C.R. 1991 Fractal dimensions and the spectra of interfaces with applications to turbulence. Proc. R. Soc. Lond. A. 435, 505–534.

    Article  MathSciNet  MATH  Google Scholar 

  • VERGASSOLA, M. , BENZI, R., BIFERALE, L. & PISARENKO, D. 1991 Wavelet analysis of a Gaussian Kolmogorov signal. Proceedings of the USA-French workshop on Wavelets and turbulence.

    Google Scholar 

  • VINCENT, A. & MENEGUZZI, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1–20.

    Article  MATH  Google Scholar 

  • ZEL’DOVICH, YA. B. & SOKOLOV, D.D. 1985 Fractals, similarity, intermediate asymptotics. Sov.Phys. Usp. 28(7), 608–616.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kevlahan, N.KR., Hunt, J.C.R., Vassilicos, J.C. (1993). A comparison of different analytical techniques for identifying structures in turbulence. In: Bonnet, J.P., Glauser, M.N. (eds) Eddy Structure Identification in Free Turbulent Shear Flows. Fluid Mechanics and Its Applications, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2098-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2098-2_27

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4930-6

  • Online ISBN: 978-94-011-2098-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics