Skip to main content

Collisionless Shock Waves

  • Chapter
Plasma Astrophysics

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 184))

  • 231 Accesses

Abstract

A shock may be defined as a layer of rapid change propagating through the plasma. In its rest frame, the shock is approximately stationary in time and is marked by a rapid transition of parameters from the medium ahead (also called upstream) to the medium behind the shock (downstream). A simple example of a shock occurs when a plane piston moves at high velocity into a homogeneous plasma at rest. A shock develops ahead of the piston between the piled-up plasma and the undisturbed plasma. The shock propagates at a velocity similar to or higher velocity than that of the piston. Another example is a wave (or a pulse) with an amplitude so high that the wave velocity of the crest is faster than the velocity of the dip. Small disturbances thus travel faster on the wave crest, overtake it and add in front of it. The wave profile steepens in the front of the wave crest and develops into a shock (like an ocean wave approaching a sloping beach steepens and finally breaks).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading and References

General reviews

  • Tidman, D.A. and Krall, N.A.: 1971, Shock Waves in Collisionless Plasmas, Wiley-Interscience, New York.

    Google Scholar 

  • Tsurutani, B.T. and Stone, R.G. (eds.): 1985, ‘Collisionless Shocks in the Heliosphere’, Geophysical Monograph 35, American Geophysical Union, Washington.

    Google Scholar 

  • Priest, E.R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publishing Comp., Dordrecht, Holland, Chapter 5 on MHD shocks.

    Book  Google Scholar 

Observations of shocks

  • Aurass, H.: 1992, ‘Radio Observations of Coronal and Interplanetary Type II Bursts’, Am. Geophys. 10, 359.

    ADS  Google Scholar 

  • Bavassano-Cattaneo, M.B., Tsurutani, B.T., and Smith, E.J.: 1986, ‘Subcritical and Supercritical Interplanetary Shocks: Magnetic Field and Energetic Particle Observations’, J. Geophys. Res. 91, 11929.

    Article  ADS  Google Scholar 

  • Bougeret, J.-L.: 1985, ‘Observations of Shock Formation and Evolution in the Solar Atmosphere’, Rev. Current Res.,Geophys. Monograph 35, 13.

    Google Scholar 

  • Hundhausen, A.J.: 1988, ‘The Origin and Propagation of Coronal Mass Ejections’, Proc. Sixth Int. Solar Wind Conf. (V.J. Pizzo, T.E. Holzer, and D.G. Sime, eds.), NCAR Tech. Note, TN-306, Vol. 1, p. 181.

    Google Scholar 

  • Kahler, S.W.: 1987, ‘Coronal Mass Ejections’, Rev. Geophys. 25, 663.

    Article  ADS  Google Scholar 

  • Nelson, G.J. and Melrose, D.B.: 1985, in Solar Radiophysics (D.J. McLean and N.R. Labrum, eds.), Cambridge University Press, Chapter 13 on type II radio bursts.

    Google Scholar 

  • Russel, C.T. and Hoppe, M.M.: 1983, ‘Upstream Waves and Particles’, Space Science Rev. 34, 155.

    Article  ADS  Google Scholar 

Particle acceleration

  • Decker, R.B.: 1988, ‘Computer Modelling of Test Particle Acceleration at Oblique Shocks’, Space Sci. Rev. 48, 195.

    Article  ADS  Google Scholar 

  • Jones, F.C. and Ellison, D.C.: 1991, ‘The Plasma Physics of Shock Acceleration’, Space Sci. Rev. 58, 259.

    Article  ADS  Google Scholar 

  • Holman, G.D. and Pesses, M. E.: 1983, ‘Solar Type II Radio Emission and the Shock Drift Acceleration of Electrons’, Astrophys. J. 267, 837.

    Article  ADS  Google Scholar 

  • Lee, M.A.: 1983, ‘Coupled Hydromagnetic Wave Excitation an Ion Acceleration at Interplanetary Traveling Shocks’, J. Geophys. Res. 88, 6109.

    Article  ADS  Google Scholar 

  • Schlickeiser, R. and Steinacker, J.: 1989, ‘Particle Acceleration in Impulsive Solar Flares II. Nonrelativistic Protons and Ions’, Solar Phys. 122, 29.

    Article  ADS  Google Scholar 

References

  • Bell, A.R.: 1978, ‘The Acceleration of Cosmic Rays in Shock Fronts’, MNRAS 182, 147.

    ADS  Google Scholar 

  • Benz, A.O. and Thejappa, G.: 1988, ‘Radio Emission of Coronal Shock Waves’, Astron. Astrophys. 202, 267.

    ADS  Google Scholar 

  • Cane, H.V. and White, S.M.: 1989, ‘On the Source Conditions for Herringbone Structure in Type II Solar Radio Bursts’, Solar Phys. 120, 137.

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1991, ‘Coronal Mass Ejection’, Phil. Trans. R. Soc. Lond. A 336, 401.

    Article  ADS  Google Scholar 

  • Kahler, S.W., Reames, D.V., Sheeley, N.R.Jr., Howard, R.A., Koomen, M.J., and Michels, D.J.: 1985, ‘A Comparison of Solar 3Helium-Rich Events with Type II Bursts and Coronal Mass Ejections’, Astrophys. J. 290, 742.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Benz, A. (1993). Collisionless Shock Waves. In: Plasma Astrophysics. Astrophysics and Space Science Library, vol 184. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2064-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2064-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4915-3

  • Online ISBN: 978-94-011-2064-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics