Skip to main content

Fourier Analysis in Finite Nilpotent Groups

  • Chapter
Applications of Fibonacci Numbers
  • 418 Accesses

Abstract

Let s denote the ordinary Fibonacci sequence taken modulo a natural number m. This is a bi-infinite periodic sequence (or loop) indexed by the integers. Thus s = (s i) and s 0 = 0,s 1 = 1. The shortest period of this sequence is called the fundamental period, and it will be denoted by k. We sometimes refer to this quantity as Wall’s Number [15]. In the course of investigating recurrences in finite nilpotent groups, the authors have been drawn into investigating the sums of monomials (manufactured from s) where the range of summation is a fundamental period. As is well-known, ∑ k−10 s i = 0. The fundamental periods of loops associated with recurrence relations in finite nilpotent groups can be governed by sums far more complex than this. Indeed, the authors have been driven to show that sums such as

$$ \sum\limits_{{r = 0}}^{{k - 1}} {\sum\limits_{{j = 0}}^{{r - 1}} {\sum\limits_{{i = 0}}^{{j - 1}} {s_r^2{s_j}s_i^2{s_{{r - j - 1}}}{s_{{j - i - 1}}}{{\left( { - 1} \right)}^{{r + 1}}} + \sum\limits_{{i = 0}}^{{k - 1}} {\sum\limits_{{i = 0}}^{{j - 1}} {{s_j}\left( {\begin{array}{*{20}{c}} {{s_j}} \\ 2 \\ \end{array} } \right){s_{{j - i - 1}}}s_i^2{{\left( { - 1} \right)}^{{j + 1}}} + \sum\limits_{{i = 0}}^{{k - 1}} {s_i^2\left( {\begin{array}{*{20}{c}} {{s_i}} \\ 3 \\ \end{array} } \right){{\left( { - 1} \right)}^{{i + 1}}}} } } } } } $$
(1)

actually vanish. The reader wishing for the full and intricate details should consult [1] or [2]. The group theoretic implications of these calculations are summarized in [3]. The techniques for handling multiple sums are similar in spirit to those demonstrated here, but the manipulations are considerably longer.

The work of the first author was supported by Ataturk University, Erzurum, Turkey

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aydin, H. “Recurrence Relations in Finite Nilpotent Groups.” Ph.D. thesis, Bath (1991).

    Google Scholar 

  2. Aydin, H. and Smith, G.C. “Remarks on Fibonacci Sequences in Groups 1.” Bath Mathematics and Computer Science Technical Report 91–50, University of Bath (1991).

    Google Scholar 

  3. Aydin, H. and Smith, G.C. “Finite p-Quotients of Some Cyclically Presented Groups.” J. London Math. Soc., to appear.

    Google Scholar 

  4. Cannon, J.J. “An introduction to the group theory language CAYLEY.” Computational Group Theory, edited by M.D. Atkinson, Academic Press, London (1984): pp. 145–183.

    Google Scholar 

  5. Chalk, C.P. and Johnson, D.L. “The Fibonacci Groups II.” Proc. Royal Soc. Edinburgh, Vol. 77A (1977): pp. 79–86.

    Article  MathSciNet  Google Scholar 

  6. Hall, P. and Higman, G. “On the p-length of p-soluble Groups and Reduction Theorems for Burnside’s Problem.” Proc. London Math. Soc., Vol. 6 (1956): pp. 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  7. Johnson, D.L. “A Note on the Fibonacci Groups.” Israel J. Math., Vol. 17 (1974): pp. 277–282.

    Article  MathSciNet  MATH  Google Scholar 

  8. Johnson, D.L., Wamsley, J.W. and Wright, D. “The Fibonacci Groups.” Proc. Lond. Math. Soc. (3), Vol 29 (1974): pp. 577–592.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kostrikin, A.I. “The Burnside Problem.” Izv Akad. Nauk SSSR, Ser. Mat., Vol 23 (1959): pp. 3–34.

    MathSciNet  MATH  Google Scholar 

  10. Lucas, E. “Théorie des fonctions numériques simplement périodiques.” Amer. J. Math., Vol. 1 (1878): pp. 184–240

    Article  MathSciNet  Google Scholar 

  11. Lucas, E. “Théorie des fonctions numériques simplement périodiques.” Amer. J. Math., Vol. 1 (1878): 289-321.

    Article  MathSciNet  Google Scholar 

  12. Ribenboim, P. The Little Book of Big Primes, Springer-Verlag (1991).

    MATH  Google Scholar 

  13. Thomas, R.M. “The Fibonacci Groups Revisited.” Proceedings of Groups St. Andrews 1989 Vol. 2. Edited by C.M. Campbell and E.F. Robertson. LMS Lecture Note Series 160, CUP, (1991): pp. 445–454.

    Google Scholar 

  14. Vaughan-Lee, M. The Restricted Burnside Problem, Oxford University Press (1990).

    MATH  Google Scholar 

  15. Vinson, J. “The Relations of the period Modulo m to the Rank of Apparition of m in the Fibonacci Sequence.” The Fibonacci Quarterly, Vol. 1 (1963): pp. 37–45.

    MathSciNet  MATH  Google Scholar 

  16. Wall, D.D. “Fibonacci Service Modulo m.” Amer. Math. Monthly, Vol 67 (1960): pp. 525–532.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wilcox, H.J. “Fibonacci Sequences of period n in Groups.” The Fibonacci Quarterly, Vol. 24 (1986): pp. 356–361.

    MathSciNet  MATH  Google Scholar 

  18. Zelmanov, E.I. “Solution of the Restricted Burnside Problem for groups of odd exponent,” Izv. Akad. Nauk SSSR Ser. Mat., Vol. 54 (1990): pp. 42–59, 221 (Russian). English translation (J. Wiegold) Math. USSR-Izv. 36 (1991) no. 1, 41–60. The even exponent case will appear in Mat. Sbornik.

    Google Scholar 

  19. Zelmanov, E.I. “Solution of the Restricted Burnside Problem for groups of odd exponent,” Izv. Akad. Nauk SSSR Ser. Mat., Vol. 54 (1990): 221

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aydin, H., Smith, G.C. (1993). Fourier Analysis in Finite Nilpotent Groups. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2058-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2058-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4912-2

  • Online ISBN: 978-94-011-2058-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics