Skip to main content

How to Advance on a Stairway by Coin Flippings

  • Chapter
Book cover Applications of Fibonacci Numbers

Abstract

Assume that N persons want to advance on a stairway. The rule is as follows: They start at level 1. The k ≥ 1 persons who advanced to the level j flip a (fair) coin; the persons with the “1” advance; the others (with a “0”) die. However, there is a demon supervising the game. Usually, he “consumes” one of the survivors. But, with a probability p, he resigns and does not interfere. (The demon can only interfere at levels 2 or larger.) The question is, how far can the party advance, on the average?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Flajolet, P. “Approximate Counting: A Detailed Analysis.” BIT, Vol. 25 (1985): pp. 113–134.

    Article  MathSciNet  MATH  Google Scholar 

  2. Flajolet, P. and Sedgewick, R. “Digital Search Trees Revisited.” SIAM J. Comput., Vol. 15 (1986): pp. 748–767.

    Article  MathSciNet  MATH  Google Scholar 

  3. Kirschenhofer, P. and Prodinger, H. “Approximate Counting: An Alternative Approach.” RAIRO Informatique Théorique et Applications. Vol. 25 (1991): pp. 43–48.

    MathSciNet  MATH  Google Scholar 

  4. Knuth, D.E. The Art of Computer Programming. Vol. 3, Addison-Wesley, Reading, MA, 1973.

    Google Scholar 

  5. Mahmoud, H.M. Evolution of Random Search Trees. Wiley-Interscience Series in Discrete Mathematics and Optimization, New York, 1992.

    MATH  Google Scholar 

  6. Nörlund, N.E. Vorlesungen über Differenzenrechnung. Chelsea, New York, 1954.

    Google Scholar 

  7. Prodinger, H. “Hypothetic Analyses: Approximate Counting in the Style of Knuth, Path length in the Style of Flajolet.” Theoret. Comput. Sci., Vol. 100 (1992): pp. 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  8. Schmid, U. “Analyse von Collision-Resolution Algorithmen in Random-Access Systemen mit dominanten Übertragungskanälen.” Dissertation, TU Wien, 1986, published as “On a Tree Collision Resolution Algorithm in Presence of Capture.” RAIRO Informatique Théorique et Applications. Vol. 26 (1992): pp. 163–197.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Prodinger, H. (1993). How to Advance on a Stairway by Coin Flippings. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2058-6_47

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2058-6_47

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4912-2

  • Online ISBN: 978-94-011-2058-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics