Skip to main content

Hausdorff Dimension in Pascal’s Triangle

  • Chapter
Book cover Applications of Fibonacci Numbers

Abstract

One of the easiest and best known ways to generate a self-similar fractal pattern is to view from an infinite distance the set of lattice points (m, k) for which (m k ) is odd. More generally, one can fix a prime p, and consider for a given exponent e ≥ 0, those lattice points (m, k) for which (m k ) is exactly divisible* by p e. When viewed from infinity (see Section IV for formal definitions), the resulting pattern Xe is usually not self-similar, but it does inherit important geometric properties from the “preceding” pattern Xe — 1

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bondarenko, B., Generalized Pascal’s Triangles and Pyramids, Their Fractals, Graphs and Applications. (Published in Russian, Ed. Acad. Sci. Uzbekistan, Tashkent, 1980).

    Google Scholar 

  2. Carlitz, L., “The Number of Binomial Coefficients Divisible by a Fixed Power of a Prime.” Riv. Mat. Univ. Parma, Vol. 11.2 (1970): pp. 45–64.

    Google Scholar 

  3. Dodd, F. and Peele, R. “Some Counting Problems Involving the Multinomial Expansion.” Math. Mag., Vol. 64(1991): pp. 115–122.

    Article  MathSciNet  MATH  Google Scholar 

  4. Flath, D. and Peele, R., “A Carry Theorem for Rational Binomial Coefficients.” Applications of Fibonacci Numbers, Volume 4. Edited by G. E. Bergum, A.F. Horadam, and A.N. Philippou, (1991): pp. 109–120.

    Chapter  Google Scholar 

  5. Flath, D. and Peele, R. “Fractal Patterns Derived from Rational Binomial Coefficients.” Applications of Fibonacci Numbers. Volume 5. Edited by G.E. Bergum, A.F. Horadam, and A.N. Philippou, (1993).

    Google Scholar 

  6. Falconer, K. The Geometry of Fractal Sets. Cambridge (1985).

    Book  MATH  Google Scholar 

  7. Holte, J., “The Dimension of the Set of Multinomial Coefficinets Not Divisible by n.” Contributed talk (abstract #863-05-726), 863rd meeting of the American Mathematical Society, San Francisco, January 16–19, 1991.

    Google Scholar 

  8. Holte, J., “The Fractal Geometry of Multinomial Coefficients Not Divisible by n” MAA/NCS Summer Seminar presentation, Duluth MN, August 13, 1991.

    Google Scholar 

  9. Howard, F., “The Number of Multinomial Coefficients Divisible by a Fixed Power of a Prime.” Pacific J. Math., Vol. 50 (1974): pp. 99–108.

    Article  MathSciNet  MATH  Google Scholar 

  10. Howard, F. and Castevens, P., “The Density of q-Binomial Coefficints Divisible by an Arbitrary Integer.” Preprint.

    Google Scholar 

  11. Knuth, D. and Wilf, H., “The Power of a Prime that Divides a Generalized Binomial Coefficient.” J. Reine Angew. Math., Vol. 396 (1989): pp. 212–219.

    MathSciNet  MATH  Google Scholar 

  12. Kummer, E., “Über die ergänzung Batze zu den allgemeinen reciprocitätsgestzen.” J. für Math., Vol. 44 (1852): pp. 115–116.

    Google Scholar 

  13. Peele, R., “Divisibility Patterns for Some Combinatorial Sequences.” Combinatorics ′88 Proceedings of the International Conference on Incidence Geometries and Combinatorial Structures (2nd volume) (1992): pp. 287–294.

    Google Scholar 

  14. Reiter, A. “Patterns in Pascal’s Triangle.” First Prize entry, Westinghouse Science Talent Search for 1990–91.

    Google Scholar 

  15. Singmaster, D., “Divisibility of Binomial and Multnomial Coefficients by Primes and Prime Powers.” 18th Anniversary Volume of the Fibonacci Association. The Fibonacci Association (1980): pp. 98–113.

    Google Scholar 

  16. Sved, M., “Divisibility-with Visibility.” Math. Intelligencer, Vol. 10 (1988): pp. 56–64.

    Article  MathSciNet  MATH  Google Scholar 

  17. Wolfram, S., “Geometry of Binomial Coefficients.” Amer. Math. Monthly, Vol. 91 (1984): pp. 566–569.

    Article  MathSciNet  MATH  Google Scholar 

  18. (added in proof) Haesler, F., Peitgen, H. and Skordev, G., “Pascal’s Triangle, Dynamical Systems.” Institut für Dynamische Systeme Report #250 (July 1991)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Flath, D., Peele, R. (1993). Hausdorff Dimension in Pascal’s Triangle. In: Bergum, G.E., Philippou, A.N., Horadam, A.F. (eds) Applications of Fibonacci Numbers. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2058-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2058-6_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4912-2

  • Online ISBN: 978-94-011-2058-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics