Skip to main content

Coulomb-Born Approximation for the Calculation of (e,2e) Cross-Sections

  • Chapter
  • 114 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 414))

Abstract

We use the Coulomb-Born approximation for the calculation of the triple differential cross section for electron impact ionization of atoms. We present a perturbation expansion that allows the use of Coulomb waves with arbitrary Zeff for the initial and final states, overcoming the difficulties that arise in standard perturbation expansions when expanding Coulomb functions and transition amplitudes. Inclusion of the electron-electron coulomb normalization factor into the final state wave function gives a remarkably good agreement with recent experimental results of the triple differential cross section for He at energies close to threshold. We integrate the triple differential cross section over the angles of the ejected electron and compute the density of the generalized oscillator strength of atomic hydrogen, and investigate its dependency on the impact energy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The finite element method has been shown to be quite useful for this purpose. See, e.g.: J. Botero and J. Shertzer, Phys Rev A 46, R1155 (1992); and J. Shertzer and J. Botero, to be published.

    Article  ADS  Google Scholar 

  2. I.-J. Kang and W. D. Folland, Phys. Rev. 164, 122 (1967); Proc. Phys. Soc. London 92, L263 (1967).

    Article  ADS  Google Scholar 

  3. M. R. H. Rudge, J. Phys. B 2, L130 (1968).

    Article  ADS  Google Scholar 

  4. J. Botero and J. H. Macek, J. Phys. B 24 L405 (1991).

    Article  ADS  Google Scholar 

  5. J. H. Macek and J. Botero, Phys. Rev. A 45, R8 (1992).

    Article  ADS  Google Scholar 

  6. J. Botero and J. H. Macek, Phys. Rev. A 45, 154 (1992).

    Article  ADS  Google Scholar 

  7. B. H. Bransden and J. P. Dewangen, Advances in Atomic and Molecular Physics vol. 25 ed. D. Bates and B. Bederson (Academic Press, London), p 343 (1988).

    Google Scholar 

  8. R. Mapleton, Proc. R. Soc. 91, 868 (1967).

    Article  Google Scholar 

  9. S. Ward and J. H. Macek, unpublished.

    Google Scholar 

  10. L. Avaldi, R. Camilloni, and G. Stefani, Phys Rev. A 41, 134 (1990).

    Article  ADS  Google Scholar 

  11. M. Brauner, J. S. Briggs and H. Klar, J. Phys. B 22, 2265 (1989); M. Brauner, J. S. Briggs and J. T. Broad, J. Phys. B 24, 287 (1990).

    Article  ADS  Google Scholar 

  12. J. Botero and J. H. Macek, Phys. Rev. Lett. 68, 576 (1992).

    Article  ADS  Google Scholar 

  13. M. Brauner and J. S. Briggs, J. Phys. B: 19, L325 (1986).

    Article  ADS  Google Scholar 

  14. M. Brauner, J. S. Briggs, H. Klar, J. T. Broad, T. Rosel, K. Jung, and H. Ehrhardt, J. Phys. B 24 657 (1991).

    Article  ADS  Google Scholar 

  15. M. R. H. Rudge and S. B. Schwartz, Proc. Roy. Soc. (London) 88, 563 (1966); 88, 579 (1966); see also M. R. H. Rudge, Rev. Mod. Phys. 40, 564 (1968).

    Article  ADS  Google Scholar 

  16. C. Pan and A. F. Starace, Phys. Rev. Letts. 67 185 (1991).

    Article  ADS  Google Scholar 

  17. P. Selles, A. Huetz, and J. Mazeau, J. Phys. B 20, 5195 (1987).

    Article  ADS  Google Scholar 

  18. T. Rosel, C. Dupré, J. Röder, A. Duguet, K. Jung, A. Lahman-Benani, and H. Ehrhardt, J. phys B 24, 3059 (1991).

    Article  ADS  Google Scholar 

  19. J. S. Briggs, Comments At. Mol. Phys. 23, 155 (1989).

    Google Scholar 

  20. C. T. Whelan and H. R. Walters, J. Phys. B: At. Mol. Opt. Phys. 23, 2989 (1990).

    Article  ADS  Google Scholar 

  21. J. Botero and J. H. Macek, J. Phys. B 24, L405 (1991).

    Article  ADS  Google Scholar 

  22. X. Zhang, C. T. Whelan and H. R. Walters, J. Phys B 23 L173 (1990); 23 L509 (1990).

    Article  ADS  Google Scholar 

  23. M. Inokuti, Rev. Mod. Phys. 43, 297 (1971); M. Inokuti, Y. Itikawa, and J. M. Turner, Rev. Mod. Phys. 50, 23 (1978).

    Article  ADS  Google Scholar 

  24. J. Botero and J. H. Macek, to be published.

    Google Scholar 

  25. W. Sandner and C. E. Theodosiou, Phys. Rev. A 42, 5208 (1990).

    Article  ADS  Google Scholar 

  26. T. Rosel, J. Rodel, L. Frost, K. Jung, H. Ehrhardt, S. Jones and D. H. Madison, accepted for publication, Phys. Rev. A.

    Google Scholar 

  27. J. Botero, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Botero, J., Macek, J.H. (1993). Coulomb-Born Approximation for the Calculation of (e,2e) Cross-Sections. In: Whelan, C.T., Walters, H.R.J., Lahmam-Bennani, A., Ehrhardt, H. (eds) (e, 2e) & Related Processes. NATO ASI Series, vol 414. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2036-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2036-4_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4901-6

  • Online ISBN: 978-94-011-2036-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics