Skip to main content

Population genetics of transposable DNA elements

A Drosophila point of view

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aguadé, M., N Miyashita & C. H. Langley, 1989. Restrictionmap variation at the zest-tko region in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 123–130.

    PubMed  Google Scholar 

  • Ajioka, J. W. & W. F. Eanes, 1989. The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. Genet. Res. 53: 1–6.

    Article  PubMed  CAS  Google Scholar 

  • Ajioka, J. W. & D. L. Haiti, 1989. Population dynamics of transposable elements, pp. 939–958 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology. Washington D.C.

    Google Scholar 

  • Ananiev, E. V, V. E. Barsky, Yu V. Ilyin & M. V. Ryzic, 1984. The arrangement of transposable elements in the polytene chromosomes of Drosophila melanogaster. Chromosoma 90: 366–377.

    Article  Google Scholar 

  • Ananiev, E. V., V. A. Gvozdev, Y. V. Ilyin, N. A. Tchurikov & G. P. Géorgiev, 1978. Reiterated genes with varying location in intercalary heterochromatin regions of Drosophila melanogaster polytene chromosomes. Chromosoma 70: 1–17.

    Article  PubMed  CAS  Google Scholar 

  • Anderson, W. W., 1969. Genetics of natural populations XLI. The selection coefficients of heterozygotes for lethal chromosomes in Drosophila on different genetic backgrounds. Genetics 62: 827–836.

    PubMed  CAS  Google Scholar 

  • Aquadro, C. F., S. F. Deese, M. M. Bland, C. H. Langley & C. C. Laurie-Ahlberg, 1986. Molecular population genetics of the alcohol dehydrogenase gene region of Drosophila melanogaster. Genetics 114: 1165–1190.

    PubMed  CAS  Google Scholar 

  • Aquadro, C. F., H. Tachida, C. H. Langley, K. Harada & T. Mukai, 1990. Increased variation in ADH enzyme activity in Drosophila mutation-accutnulation experiment is not due to transposable elements at the Adh structural gene. Genetics 126: 915–919.

    PubMed  CAS  Google Scholar 

  • Arnault, C, A. Heizmann, C. Loevenbruck & C. Biémont, 1991. Environmental Stresses and mobilization of transposable elements in inbred lines of Drosophila melanogaster. Mutation Res. 248: 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R. J. & H. A. Wichman, 1990. Retrotransposon MYS is concentrated on the sex chromosomes: implications for copy number containment. Evolution 44: 2083–2088.

    Article  Google Scholar 

  • Barrett, S. C. H. & D. Charlesworth, 1991. Effects of a change in the level of inbreeding on the genetic load. Nature 352: 522–524.

    Article  PubMed  CAS  Google Scholar 

  • Belyaeva, E. Sp., E. V. Ananiev & V. A. Gvozdev, 1984. Distribution of mobile dispersed genes (mdg-1 and mdg-3) in the chromosomes of Drosophila melanogaster. Chromosoma 90: 16–19.

    Article  Google Scholar 

  • Biémont, C, 1986. Polymorphism of the mdg-1 and I mobile elements in Drosophila melanogaster. Chromosoma 93: 393–397.

    Article  Google Scholar 

  • Biémont, C. & A. Aouar, 1987. Copy-number dependent transpositions and excisions of the mdg-1 mobile element in inbred lines of Drosophila melanogaster. Heredity 58: 39–47.

    Article  Google Scholar 

  • Biémont, C, A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in a Drosophila melanogaster inbred line. Nature 329: 742–744.

    Article  PubMed  Google Scholar 

  • Biémont, C, A. Aouar, C. Gautier & C. Terzian, 1989. Hybrid viability is correlated with the I and P mobile element copy numbers of the maternal inbred line in Drosophila melanogaster. Heredity 62: 301–305.

    Article  Google Scholar 

  • Biémont, C, C. Arnault, A. Heizmann & S. Ronsseray, 1990a. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.

    Article  PubMed  Google Scholar 

  • Biémont, C. & C. Gautier, 1987. Mdg-1 mobile element heterozygosity in Drosophila melanogaster. Heredity 58: 167–172.

    Article  Google Scholar 

  • Biémont, C. & C. Gautier, 1988. Localisation polymorphism of mdg-1, copia, I and P mobile elements in genomes of Drosophila melanogaster, from data of inbred lines. Heredity 60: 335–346.

    Article  Google Scholar 

  • Biémont, C. & C. Gautier, 1989. Interactions between transposable elements for insertion in the Drosophila melanogaster genome. Heredity 63: 125–133.

    Article  PubMed  Google Scholar 

  • Biémont, C, C. Gautier & A. Heizmann, 1988. Independent regulation of mobile element copy number in Drosophila melanogaster inbred lines. Chromosoma 96: 291–294.

    Article  Google Scholar 

  • Biémont, C, S. Ronsseray, D. Anxolabéhère, H. Izaabel & C. Gautier, 1990b. Localisation of P elements, copy number regulation, and cytotype determination in Drosophila melanogaster. Genet. Res. 56: 3–14.

    Article  PubMed  Google Scholar 

  • Biémont, C. & C. Terzian, 1986. Regulation in the number of mdg-l mobile elements in inbred Drosophila melanogaster. Genetica 71: 161–165.

    Article  Google Scholar 

  • Boeke, J. D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Boeke, J., D. Garfinkel, C. Styles & G. Fink, 1985. Ty elements transpose through an RNA indermediate. Cell 40: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Bownes, M., 1990. Preferential insertion of P elements into genes expressed in the germ line of Drosophila melanogaster. Mol. Gen. Genet. 222: 457–460.

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw, V. A. & K. McEntee, 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218: 465–474.

    Article  PubMed  CAS  Google Scholar 

  • Brégliano, J. C. & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press, N.Y.

    Google Scholar 

  • Brookfield, J. F. Y, 1986. The population biology of transposable elements. Phil. Trans. R. Soc. Lond. 312: 217–226.

    Article  CAS  Google Scholar 

  • Brookfield, J. F. Y, 1991. Models of repression of transposition in P-M hybrid dysgenesis by P cytotype and by zygotically encoded repressor proteins. Genetics 128: 471–486.

    PubMed  CAS  Google Scholar 

  • Bryant, E. H., S. A. McCommas & L. M. Combs, 1986. The effect of an experimental bottleneck upon quantitative genetic variation in the housefly. Genetics 114: 1191–1211.

    PubMed  CAS  Google Scholar 

  • Bryant, E. H., L. M. Meffert & S. A. McCommas, 1990. Fitness rebound in serially bottleneck populations of the house fly. The Amer. Nat. 136: 542–549.

    Article  Google Scholar 

  • Charlesworth, B., 1985. The population genetics of transposable elements, pp. 213–232 in Population genetics and molecular evolution, edited by T. Ohta & K. Aoki. Springer-Verlag, Berlin.

    Google Scholar 

  • Charlesworth, B., 1988. The maintenance of transposable elements in natural populations, pp. 189–212 in Plant Transposable Elements, edited by O. Nelson. Plenum Press, N.Y., London.

    Chapter  Google Scholar 

  • Charlesworth, B., 1991. Transposable elements in natural populations with a mixture of selected and neutral insertion sites. Genet. Res. 57: 127–134.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & D. Charlesworth, 1983. The population dynamics of transposable elements. Genet. Res. 42: 1–27.

    Article  Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Ann. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B. & A. Lapid, 1989. A study of 10 transposable elements on X chromosomes from a population of Drosophila melanogaster. Genet. Res. 54: 113–125.

    Article  PubMed  CAS  Google Scholar 

  • Cooley, L., R. Kelley & A. Spradling, 1988. Insertional mut-agenesis of the Drosophila genome with single P elements. Science 239: 1121–1128.

    Article  PubMed  CAS  Google Scholar 

  • Crow, J. F. & M. J. Simmons, 1983. The mutation load in Drosophila, pp. 1–35 in The Genetics and Biology of Drosophila, edited by M. Ashburner, H. L. Carson & J. N., Jr. Thompson. Academic Press, London.

    Google Scholar 

  • Csink, A. K. & J. F. McDonald, 1989. Copia expression is variable among natural populations of Drosophila. Genetics 126: 375–385.

    Google Scholar 

  • Curio, M. J. & D. J. Garfinkel, 1991. Single-step selection for Tyl element retrotransposition. Proc. Natl. Acad. Sci. 88: 936–940.

    Article  Google Scholar 

  • Davis, P. S., M. W. Shen & B. H. Judd, 1987. Assymmetrical pairing of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. Proc. Natl. Acad. Sci. 84: 174–178.

    Article  PubMed  CAS  Google Scholar 

  • Dooner, H. K. & A. Belachew, 1991. Chromosome breakage by pairs of closely linked transposable elements of the Ac-Ds family in maize. Genetics 129: 855–862.

    PubMed  CAS  Google Scholar 

  • Eanes, W. F., C. Wesley, J. Hey, D. Houle & J. Ajioka, 1988. The fitness consequences of P element insertion in Drosophila melanogaster. Genet. Res. 52: 17–26.

    Article  Google Scholar 

  • Eanes, W. F., J. W. Ajioka, J. Hey & C. Wesley, 1989. Restriction-map variation associated with the G6PD polymorphism in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6: 384–397.

    PubMed  CAS  Google Scholar 

  • Echalier, G., 1989. Drosophila retrotransposons; interactions with genome. Adv. Virus Res. 36: 33–105.

    Article  PubMed  CAS  Google Scholar 

  • Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in Drosophila melanogaster. Nature 331: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R., D. M. Johnson-Schlitz, W. B. Eggleston & J. Sved, 1990. High-frequency P element loss in Drosophila is homolog dependent. Cell 62: 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends in Genet. 5: 103–107.

    Article  CAS  Google Scholar 

  • Fitch, W. M. & W. R. Atchley, 1985. Evolution of inbred strains of mice appears rapid. Science 228: 1169–1175.

    Article  PubMed  CAS  Google Scholar 

  • Frankham, R., A. Torkamanzehi & C. Moran, 1991. P element transposon-induced quantitative genetic variation for inebriation time in Drosophila melanogaster. Theor. Apll. Genet. 81: 317–320.

    Google Scholar 

  • Frei, B., C. W. Stuber & M. M. Goodman, 1986. Use of allozymes as genetic markers for predicting performance in maize single cross hybrids. Crop. Science 26: 37–42.

    Article  Google Scholar 

  • Freund, R. & M. Meselson, 1984. Long terminal repeat nucleotide sequence and specific insertion of the gypsy transposon. Proc. Natl. Acad. Sci. 81: 4462–4464.

    Article  PubMed  CAS  Google Scholar 

  • Georgiev, P. G., S. L. Kiselev, O. B. Simonova & T. I. Gerasimova, 1990. A novel transposition system in Drosophila melanogaster depending on the stalker mobile genetic element. EMBO J. 9: 2037–2044.

    PubMed  CAS  Google Scholar 

  • Gerasimova, T. I., L. V. Matyunina, Y. V. Ilyin & G. P. Georgiev, 1984a. Simultaneous transposition of different mobile elements. Relation to multiple mutagenesis in Drosophila melanogaster. Mol. Gen. Genet. 194: 517–522.

    Article  CAS  Google Scholar 

  • Gerasimova, T. I., L. J. Mizrokhi & G. P. Georgiev, 1984b. Transposition bursts in genetically unstable Drosophila melanogaster. Nature 309: 714–716.

    Article  Google Scholar 

  • Goldberg, M. L., J.-Y. Sheen, W. J. Gehring & M. M. Green, 1983. Unequal crossing-over associated with asymmetrical synapsis between nomadic elements in the Drosophila melanogaster genome. Proc. Natl. Acad. Sci. 80: 5017–5021.

    Article  PubMed  CAS  Google Scholar 

  • Golding, G. B., C. F. Aquadro & C. H. Langley, 1986. Sequence evolution within populations under multiple types of mutation. Proc. Natl. Acad. Sci. 83: 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Gridley, T., P. Soriano & R. Jaenisch, 1987. Insertional mutagenesis in mice. Trends in Genet. 3: 162–166.

    Article  CAS  Google Scholar 

  • Gvozdev, V. A., 1981. The nature and functions of intercalary heterochromatin in Drosophila melanogaster. In Molecular basis of genetic processes. Proc. XIV Int. Congr. Genet. 3: 257–271.

    Google Scholar 

  • Gvozdev, V. A., E. S. Belyaeva, Y. V. Ilyin, I. S. Amosova & L. Z. Kaidanov, 1981. Selection and transposition of mobile dispersed genes in Drosophila melanogaster. Cold Spring Harb. Symp. Quant. Biol. 45: 673–685.

    Article  PubMed  Google Scholar 

  • Harada, K., A. Koga, S. Kusakabe & T. Mukai, 1988. A new family of mobile dispersed middle repetitive elements in Drosophila melanogaster. Proc. Japan Acad. 64: 193–196.

    Article  CAS  Google Scholar 

  • Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. 87: 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  • Harden, N. & M. Ashburner, 1990. Characterization of the FB-NOF transposable element of Drosophila melanogaster. Genetics 126: 387–400.

    PubMed  CAS  Google Scholar 

  • Hey, J., 1989. The transposable portion of the genome of Drosophila algonquin is very different from that in Drosophila melanogaster. Mol. Biol. Evol. 6: 66–79.

    PubMed  CAS  Google Scholar 

  • Hudson, A., R. Carpenter & E. S. Coen, 1987. De novo activation of the transposable element Tam2 of Antirrhinum majus. Mol. Gen. Genet. 207: 54–59.

    Article  CAS  Google Scholar 

  • Ikenaga, H. & K. Saigo, 1982. Insertion of movable genetic element, 297, into the T-A-T-A box for the H3 histone gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. 79: 4143–4147.

    Article  PubMed  CAS  Google Scholar 

  • Inouye, S., S. Yuki & K. Saigo, 1984. Sequence-specific insertion of the Drosophila transposable genetic element 17.6. Nature 310: 332–333.

    Article  PubMed  CAS  Google Scholar 

  • Ising, B. & K. Block, 1981. Derivation-dependent distribution of insertion sites for a Drosophila transposon. Cold Spring Harb. Symp. Quant. Biol. 45: 527–544.

    Article  PubMed  CAS  Google Scholar 

  • Jones, M. A., S. I. Fuerstenberg & C. A. Hennelly, 1990. Nonrandom chromosomal distribution of Ac-like sequences in inbred maize. Genet. Res. 55: 71–80.

    Article  Google Scholar 

  • Junakovic, N., R. Cavena & P. Ballario, 1984. Genomic distribution of copia-like elements in laboratory stocks of Drosophila melanogaster. Chromosoma 90: 378–382.

    Article  CAS  Google Scholar 

  • Junakovic, N., C. Di Franco, P. Barsanti & G. Palumbo, 1987. Transposition of copia-like nomadic elements can be induced by heat-shock. J. Mol. Evol. 24: 89–93.

    Article  Google Scholar 

  • Junakovic, N., C. Di Franco, M. Best-Belpomme & G. Echalier, 1988. On the transposition of copia-like nomadic elements in cultured Drosophila cells. Chromosoma 97: 212–218.

    Article  PubMed  CAS  Google Scholar 

  • Kaplan, N. L. & J. F. Y. Brookfield, 1983. Transposable elements in mendelian populations. III. Statistical results. Genetics 104: 485–495.

    PubMed  CAS  Google Scholar 

  • Kim, A. I., E. S. Belyaeva & M. M. Aslanian, 1990. Autonomous transposition of gypsy mobile elements and genetic instability in Drosophila melanogaster. Mol. Gen. Genet. 224: 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Kim, A. I. & E. S. Belyaeva, 1991. Transposition of mobile elements gypsy (mdg4) and hobo in germ-line and somatic cells of a genetically unstable mutator strain of Drosophila melanogaster. Mol. Gen. Genet. 229: 437–444.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C. H. & C. F. Aquadro, 1987. Restriction map variation in natural populations of Drosophila melanogaster: white locus region. Mol. Biol. Evol. 4: 651–663.

    PubMed  CAS  Google Scholar 

  • Langley, C. H., J. F. Y. Brookfield & N. L. Kaplan, 1983. Transposable elements in mendelian populations. I. A theory. Genetics 104: 457–472.

    CAS  Google Scholar 

  • Langley, C. H., E. A. Montgomery, R. Hudson, N. L. Kaplan & B. Charlesworth, 1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52: 223–236.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C. H., E. A. Montgomery & W. F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. 79: 5631–5635.

    Article  PubMed  CAS  Google Scholar 

  • Laurie-Ahlberg, C. C. & L. F. Stam, 1987. Use of P-element-mediated transformation to identify the molecular basis of naturally occurring variants affecting Adh expression in Drosophila melanogaster. Genetics 115: 129–140.

    PubMed  CAS  Google Scholar 

  • Lee, M. & R. L. Phillips, 1988. The chromosomal basis of somaclonal variation. Ann. Rev. Plant Physiol. 39: 413–437.

    Article  Google Scholar 

  • Leigh-Brown, A. J. & J. E. Moss, 1987. Tranposition of the I element and copia in a natural population of Drosophila melanogaster. Genet. Res. 49: 121–128.

    Article  Google Scholar 

  • Leigh-Brown, A.J., S. J. Ross, L. S. Alphey, A. J. Flavell & T. Gerasimova, 1989. Instability in the ctMR2 strain of Drosophila melanogaster: role of P element functions and structure of revertants. Mol. Gen. Genet. 218: 208–213.

    Article  Google Scholar 

  • Lewontin, R. C, 1974. The genetic basis of evolutionary changes. Columbia University Press, N.Y.

    Google Scholar 

  • Lewontin, R. C, 1985. Population genetics. Ann. Rev. Genet. 19: 81–102.

    Article  PubMed  CAS  Google Scholar 

  • Lillis, M. & M. Freeling, 1986. Mu transposons in maize. Trends in Genet. 2: 183–188.

    Article  CAS  Google Scholar 

  • Lim, J. K., 1988. Intrachromosomal rearrangements mediated by hobo transposons in Drosophila melanogaster. Proc. Natl. Acad. Sci. 85: 9153–9157.

    Article  PubMed  CAS  Google Scholar 

  • Lim, J. K., M. J. Simmons, J. D. Raymond, N. M. Cox, R. F. Doll & T. P. Culbert, 1983. Homologue destabilisation by a putative transposable element in Drosophila melanogaster. Proc. Natl. Acad. Sci. 80: 6624–6627.

    Article  PubMed  CAS  Google Scholar 

  • Mackay, T. F. C, 1985. Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111: 351–374.

    PubMed  CAS  Google Scholar 

  • Mackay, T. F. C, 1987. Transposable element-induced polygenic mutations in Drosophila melanogaster. Genet. Res. 49: 225–233.

    Article  Google Scholar 

  • Mackay, T. F. C, 1989. Transposable elements and fitness in Drosophila melanogaster. Genome 31: 284–295.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Article  Google Scholar 

  • McEntee, K. & V. A. Bradshaw, 1988. Effects of DNA damage on transcription and transposition of Ty retrotransposons of yeast, pp. 245–254 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald & I. B. Weinstein, Cold Spring Harbor Press. Cold Spring Harbor, N.Y.

    Google Scholar 

  • Mével-Ninio, M. C. Mariol & M. Gans, 1989. Mobilization of the gypsy and copia retrotransposons in Drosophila melanogaster induces reversion of the ovoD dominant femalesterile mutations: molecular analysis of revertant alleles. EMBO J. 8: 1549–1558.

    PubMed  Google Scholar 

  • Montgomery, E. A., B. Charlesworth & C. H. Langley, 1987. A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. Genet. Res. 49: 31–41.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, E. A. & C. H. Langley, 1983. Transposable elements in Mendelian populations: II Distribution of three copia-like elements in a natural population of Drosophila melanogaster. Genetics 104: 473–483.

    PubMed  CAS  Google Scholar 

  • Moran, C. & A. Torkamanzehi, 1990. P elements and quantitative variation in Drosophila, pp. 99–117 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer & R. J. MacIntyre. Plenum, N.Y.

    Google Scholar 

  • Mukai, T. & C. C. Cockerham, 1977. Spontaneous mutation rates of isozyme genes in Drosophila melanogaster. Proc. Natl. Acad. Sci. 74: 2514–2517.

    Article  PubMed  CAS  Google Scholar 

  • O'Hare, K. & G. M. Rubin, 1983. Structures of P transposable elements and their sites of insertion and excision in the Drosophila melanogaster genome. Cell 34: 25–35.

    Article  PubMed  Google Scholar 

  • Pardue, M. L., 1991. Dynamic instability of chromosomes and genomes. Cell 66: 427–431.

    Article  PubMed  CAS  Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.

    PubMed  CAS  Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, L. E. llyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copialike mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.

    Article  CAS  Google Scholar 

  • Pélisson, A. & J.-C. Brégliano, 1987. Evidence for rapid limitation of the I element copy number in a genome submitted to several generations of I-R hybrid dysgenesis in Drosophila melanogaster. Mol. Gen. Genet. 207: 306–313.

    Article  Google Scholar 

  • Pierce, D. A. & J. C. Lucchesi, 1981. Analysis of a dispersed repetitive DNA sequence in isogenic lines of Drosophila melanogaster. Chromosome 82: 471–492.

    Article  CAS  Google Scholar 

  • Potter, S. S., W. J. Brorein, P. Dunsmuir & G. M. Rubin, 1979. Transposition of elements of the 412, copia, and 297 dispersed repeated gene families in Drosophila. Cell 17: 415–427.

    Article  PubMed  CAS  Google Scholar 

  • Preston, C. R. & W. R. Engels, 1984. Movements of P elements within a P strain. Droso. Infor. Serv. 60: 169–170.

    Google Scholar 

  • Ronsseray, S. & D. Anxolabéhère, 1986. Chromosomal distribution of P and I transposable elements in a natural population of Drosophila melanogaster. Chromosoma 94: 433–440.

    Article  Google Scholar 

  • Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1989. Distribution of P and I mobile elements copy number in Drosophila melanogaster populations. Chromosoma 98: 207–214.

    Article  PubMed  CAS  Google Scholar 

  • Ronsseray, S., M. Lehmann & D. Anxolabéhère, 1991. The maternally inherited regulation of P elements in Drosophila melanogaster can be elicited by two P copies at cytological site 1A on the X chromosome. Genetics 129: 501–512.

    PubMed  CAS  Google Scholar 

  • Rose, M. R. & W. F. Doolittle, 1983. Molecular biological mechanisms of speciation. Science 200: 157–161.

    Article  Google Scholar 

  • Rubin, G., M. G. Kidwell & P. M. Bingham, 1982. The molecular basis of P-M hybrid dysgenesis: the nature of induced mutations. Cell 29: 987–994.

    Article  PubMed  CAS  Google Scholar 

  • Salinas, J., M. Zerial, J. Filipski, M. Crepin & G. Bernardi, 1987. Nonrandom distribution of MMTV proviral sequences in the mouse genome. Nucleic Acid Res. 15: 3009–3022.

    Article  PubMed  CAS  Google Scholar 

  • Scheinker, V. S., E. R. Lozovskaya, J. G. Bishop, V. G. Corces & M. B. Evgen'ev, 1990. A long terminal repeat-containing retrotransposon is mobilized during hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. 87: 9615–9619.

    Article  PubMed  CAS  Google Scholar 

  • Shevelyov, Y. Y., M. D. Balakireva & V. A. Gvozdev, 1989. Heterochromatic regions in different Drosophila melanogaster stocks contain similar arrangements of moderate repeats with inserted copia-like elements (MDG1). Chromosoma 98: 117–122.

    Article  Google Scholar 

  • Shih, C.-C, J. P. Stoye & J. M. Coffin, 1988. Highly preferred targets for retrovirus integrations. Cell 53: 531–537.

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton, A. E., T. F. C. Mackay & A. J. Leigh Brown, 1990. Transposable element-induced response to artificial selection in Drosophila melanogaster. molecular analysis of selection lines. Genetics 125: 803–811.

    PubMed  CAS  Google Scholar 

  • Simmons, M. J. & J. F. Crow, 1977. Mutation affecting fitness in Drosophila populations. Ann. Rev. Genet. 11: 49–78.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, M. J., J. D. Raymond, T. R. Laverty, R. F. Doll, N. C. Raymond, G. J. Kocur & E. A. Drier, 1985. Chromosomal effects on mutability in the P-M system of hybrid dysgenesis in Drosophila melanogaster. Genetics 111: 869–884.

    PubMed  CAS  Google Scholar 

  • Spradling, A. C. & G. M. Rubin, 1983. The effect of chromosomal position on the expression of the Drosophila xanthine dehydrogenase gene. Cell 34: 47–57.

    Article  PubMed  CAS  Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acid Res. 13: 4401–4410.

    Article  PubMed  CAS  Google Scholar 

  • Strauss, S. H., 1986. Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata. Genetics 113: 115–134.

    PubMed  CAS  Google Scholar 

  • Strobel, E., P. Dunsmuir & G. M. Rubin, 1979. Polymorphism in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila. Cell 17: 429–439.

    Article  PubMed  CAS  Google Scholar 

  • Suh, D. S. & T. Mukai, 1990. The genetic structure of natural populations of Drosophila melanogaster. XXIV. Effects of hybrid dysgenesis on the components of genetic variance of viability. Genetics 127: 545–552.

    Google Scholar 

  • Sved, J. A., L. M. Blackman, A. S. Gilchrist & W. R. Engels, 1991. High levels of recombination induced by homologous P elements in Drosophila melanogaster. Mol. Gen. Genet. 225: 443–447.

    Article  PubMed  CAS  Google Scholar 

  • Tanda, S., A. E. Shrimpton, C. Ling-Ling, H. Itayama, H. Mat-subayashi, K. Saigo, Y. N. Tobari & C. H. Langley, 1988. Retrovirus-like features and site specific insertions of a transposable element torn in Drosophila ananassae. Mol. Gen. Genet. 214: 405–411.

    Article  PubMed  CAS  Google Scholar 

  • Taruscio, D. & L. Manuelidis, 1991. Integration site preferences of endogenous retroviruses. Chromosoma 101: 141–156.

    Article  PubMed  CAS  Google Scholar 

  • Terzian, C. & C. Biémont, 1988. The founder effect theory: quantitative variation and mdg-1 mobile element polymorphism in experimental populations of Drosophila melanogaster. Genetica 76: 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Tobari, I. & M. Murata, 1970. Effect of X-rays on genetic loads in a cage population of Drosophila melanogaster. Genetics 65: 107–119.

    PubMed  CAS  Google Scholar 

  • Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophila suppressor of sable locus occur in DNase I hypersensitive subregions of 5'-transcribed nontranslated sequences. Genetics 126: 1071–1082.

    PubMed  CAS  Google Scholar 

  • Whiting, J. H., Jr, J. L. Farmer & D. E. Jeffery, 1987. Improved in situ hybridization and detection of biotin-labeled D. melanogaster DNA probes hybridized to D. virilis salivary gland chromosomes. Droso. Infor. Serv. 66: 170–171.

    Google Scholar 

  • Wolf. K. H., P. M. Sharp & W. H. Li, 1989. Mutation rates differ among regions of the mammalian genome. Nature 337: 283–285.

    Article  Google Scholar 

  • Woodruff, R. C, J. L. Blount & J. N. Jr. Thompson, 1987. Hybrid dysgenesis in Drosophila melanogaster is not a general release mechanism for DNA transpositions. Science 237: 1206–1207.

    Article  PubMed  CAS  Google Scholar 

  • Xu, H. & J. D. Boeke, 1991. Inhibition of Tyl transposition by mating pheromones in Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 2736–2743.

    PubMed  CAS  Google Scholar 

  • Yamaguchi, O., T. Yamazaki, K. Saigo, T. Mukai & A. Robertson, 1987. Distribution of three transposable elements, P, 297, and copia in natural populations of Drosophila melanogaster. Jpn. J. Genet. 62: 205–216.

    Article  Google Scholar 

  • Young, M. V. & H. E. Schwartz, 1981. Nomadic gene families in Drosophila. Cold Spring Harb. Symp. quant. Biol. 45: 629–640.

    Article  PubMed  CAS  Google Scholar 

  • Yukuhiro, K., K. Harada & T. Mukai, 1985. Viability mutations induced by the P elements in Drosophila melanogaster. Jpn. J. Genet. 60: 531–537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biémont, C. (1993). Population genetics of transposable DNA elements. In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics