Skip to main content

The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

The basic structure and properties of Ty elements are considered with special reference to their role as agents of evolutionary change. Ty elements may generate genetic variation for fitness by their action as mutagens, as well as by providing regions of portable homology for recombination. The mutational spectra generated by Ty l transposition events may, due to their target specificity and gene regulatory capabilities, possess a higher frequency of adaptively favorable mutations than spectra resulting from other types of mutational processes. Laboratory strains contain between 25–35 elements, and in both these and industrial strains the insertions appear quite stable. In contrast, a wide variation in Ty number is seen in wild isolates, with a lower average number/genome. Factors which may determine Ty copy number in populations include transposition rates (dependent on Ty copy number and mating type), and stabilization of Ty elements in the genome as well as selection for and against Ty insertions in the genome. Although the average effect of Ty transpositions are deleterious, populations initiated with a single clone containing a single Ty element steadily accumulated Ty elements over 1,000 generations. Direct evidence that Ty transposition events can be selectively favored is provided by experiments in which populations containing large amounts of variability for Ty l copy number were maintained for ∼ 100 generations in a homogeneous environment. At their termination, the frequency of clones containing 0 Ty elements had decreased to ∼ 0.0, and the populations had became dominated by a small number of clones containing >0 Ty elements. No such reduction in variability was observed in populations maintained in a structured environment, though changes in Ty number were observed. The implications of genetic (mating type and ploidy) changes and environmental fluctuations for the long-term persistence of Ty elements within the S. cerevisiae species group are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, J. & P. W. Oeller, 1986. Structure of evolving populations of Saccharomyces cerevisiae: Adaptive changes are frequently associated with alterations involving mobile elements belonging to the Ty family. Proc. Natl. Acad. Sci. USA 83: 7124–7127.

    Article  PubMed  CAS  Google Scholar 

  • Adams, S. E., J. Mellor, K. Gull, R. B. Sim, M. F. Tuite, S. M. Kingsman & A. J. Kingsman, 1987. The functions and relationships of Ty-VLP proteins in yeast reflect those of mammalian retroviral proteins. Cell 49: 111–119.

    Article  PubMed  CAS  Google Scholar 

  • Barnett, J. A., R. W. Payne & D. Yarrow, 1983. Yeasts, characteristics and identification. Cambridge University Press, Cambridge.

    Google Scholar 

  • Berg, D. E. & M. M. Howe, 1989. eds. Mobile DNA. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Boeke, J. D., 1989. Transposable elements in Saccharomyces cerevisiae, pp. 335–374 in Mobile DNA, edited by D. E. Berg and M. M. Howe. American Society for Microbiology, Washington D.C.

    Google Scholar 

  • Boeke, J. D., D. J. Eichinger, D. Castrillon & G. R. Fink, 1988. The Saccharomyces cerevisiae genome contains functional and non-functional copies of transposon Tyl. Mol. Cell. Biol. 8: 1432–1442.

    PubMed  CAS  Google Scholar 

  • Boeke, J. D., D. J. Eichinger & G. Natsoulis, 1991. Doubling Tyl element copy number in Saccharomyces cerevisiae: host genome stability and phenotypic effects. Genetics 129: 1043–1052.

    PubMed  CAS  Google Scholar 

  • Boeke, J. D. & D. J. Garfinkel, 1988. Yeast Ty elements as retroviruses, pp. 15–39 in Viruses of Fungi and Simple Eukaryotes, edited by Y. Koltin and M. J. Leibowitz. Marcel Dekker Inc, New York.

    Google Scholar 

  • Boeke, J. D., D. J. Garfinkel, C. A. Styles & G. R. Fink, 1985. Ty elements transpose through an RNA intermediate. Cell 40: 491–500.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J. D., C. A. Styles & G. R. Fink, 1986. Saccharomyces cerevisiae SPT3 gene is required for transposition and transpositional recombination of chromosomal Ty elements. Mol. Cell. Biol. 6: 3575–3581.

    PubMed  CAS  Google Scholar 

  • Cameron, J. R., E. Loh & R. W. Davis, 1979. Evidence for transposition of dispersed repetitive DNA families in yeast. Cell 16: 739–751.

    Article  PubMed  CAS  Google Scholar 

  • Chao, L., C. Vargas, B. B. Spear & E. C. Cox, 1983. Transposable elements as mutator genes in evolution. Nature 303: 633–635.

    Article  PubMed  CAS  Google Scholar 

  • Chao, L. & S. M. McBroom, 1985. Evolution of transposable elements: An IS10 insertion increases fitness in E. coli. Mol. Biol. Evol. 2: 359–369.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1989. The population genetics of Drosophila transposable elements. Annu. Rev. Genet. 23: 251–287.

    Article  PubMed  CAS  Google Scholar 

  • Clare, J. J., M. Belcourt & P. J. Farabaugh, 1988. Efficient translational frameshifting occurs within a conserved sequence of the overlap between the two genes of a yeast Tyl transposon. Proc. Natl. Acad. Sci. USA 85: 6816–6820.

    Article  PubMed  CAS  Google Scholar 

  • Clare, J. J. & P. J. Farabaugh, 1985. Nucleotide sequence of a yeast Ty element: evidence for an unusual mechanism of gene expression. Proc. Natl. Acad. Sci. USA 82: 2829–2833.

    Article  PubMed  CAS  Google Scholar 

  • Clark, D. J., V. W. Bilanchone, L. J. Haywood, S. L. Dildine & S. B. Sandmeyer, 1988. A yeast sigma composite element, Ty3, has properties of a retrotransposon. J. Biol. Chem. 263: 1413–1423.

    PubMed  CAS  Google Scholar 

  • Conover, W. J., 1971. Practical Nonparametric Statistics. John Wiley, New York.

    Google Scholar 

  • Cornelis, G., 1980. Transposition of Tn951 (Tnlac) and cointegrate formation are thermosensitive processes. J. Gen. Microbiol. 117: 243–247.

    PubMed  CAS  Google Scholar 

  • Curcio, M. J., N. J. Sanders & D. J. Garfinkel, 1988. Transpositional competence and transcription of endogenous Ty elements in Saccharomyces cerevisiae: implications for regulation of transposition. Mol. Cell. Biol. 8: 3571–3581.

    PubMed  CAS  Google Scholar 

  • Doolittle, W. F. & C. Sapienza, 1980. Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603.

    Article  PubMed  CAS  Google Scholar 

  • Eibel, H., J. Gafner, A. Stotz & P. Philippsen, 1980. Characterization of the yeast mobile element Tyl. Cold Spring Harbor Symp. Quant. Biol. 45: 609–617.

    Article  Google Scholar 

  • Eibel, H. & P. Philippsen, 1984. Preferential integration of yeast transposable element Ty into a promoter region. Nature 307: 386–388.

    Article  PubMed  CAS  Google Scholar 

  • Elder, R. T., T. P. St. John, D. T. Stinchcomb & R. W. Davis, 1980. Studies on the transposable element Tyl of yeast. I. RNA homologous to Tyl. Cold Spring Harbor Symp. Quant. Biol. 45: 581–584.

    Article  Google Scholar 

  • Elder, R. T, E. Loh & R. W. Davis, 1983. RNA from the yeast transposable element Tyl has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80: 2432–2436.

    Article  PubMed  CAS  Google Scholar 

  • Errede, B., T. S. Cardillo, F. Sherman, E. Dubois, J. Deschamps & J. Wiame, 1980. Mating signals control expression of mutations resulting from insertion of a transposable repetitive element adjacent to diverse yeast genes. Cell 22: 427–436.

    Article  PubMed  CAS  Google Scholar 

  • Farabaugh, P. J. & G. R. Fink, 1980. Insertion of the eukaryotic transposable element Tyl creates a 5 bp duplication. Nature 286: 352–356.

    Article  PubMed  CAS  Google Scholar 

  • Fink, G. R., J. D. Boeke & D. J. Garfinkel, 1986. The mechanism and consequences of retrotransposition. Trends Genet. 2: 118–123.

    Article  CAS  Google Scholar 

  • Finnegan, D. J., 1989. Eukaryotic transposable elements and genome evolution. Trends Genet. 5: 103–107.

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick, B. J. & J. Sved, 1986. High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48: 89–94.

    Article  Google Scholar 

  • Gafner, J., E. M. De Robertis & P. Philippsen, 1983. Delta sequences in the 5' region of yeast tRNA genes. EMBO J. 2: 583–591.

    PubMed  CAS  Google Scholar 

  • Gafner, J. & P. Philippsen, 1980. The yeast transposon Tyl generates duplicates of target DNA in insertion. Nature 286: 414–418.

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel, D. J., J. D. Boeke & G. R. Fink, 1985. Ty element transposition: reverse transcriptase and virus-like particles. Cell 42: 507–517.

    Article  PubMed  CAS  Google Scholar 

  • Garfinkel, D. J. & J. N. Strathern, 1991. Ty mutagenesis in Saccharomyces cerevisiae Meth. Enzymol. 194: 342–361.

    Article  PubMed  CAS  Google Scholar 

  • Giroux, C. N., J. R. A. Mis, M. K. Pierce, S. E. Kohalmi & B. A. Kunz, 1988. DNA sequence analysis of spontaneous mutations in the SUP4-0 gene of Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 978–981.

    PubMed  CAS  Google Scholar 

  • Goebl, M. G. & T. D. Petes, 1986. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46: 983–992.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    PubMed  CAS  Google Scholar 

  • Hall, B. G., 1990. Spontaneous point mutations that occur more often when advantageous than when neutral. Genetics 126: 5–16.

    PubMed  CAS  Google Scholar 

  • Hansen, L. J., D. L. Chalker & S. B. Sandmeyer, 1988. Ty3, a yeast retrotransposon associated with tRNA genes, has homology to animal retroviruses. Mol. Cell. Biol. 8: 5245–5256.

    PubMed  CAS  Google Scholar 

  • Hansen, L. J. & S. B. Sandmeyer, 1990. Characterization of a transpositionally active Ty3 element and identification of the Ty3 integrase protein. J. Virol. 64: 2599–2607.

    PubMed  CAS  Google Scholar 

  • Iida, H., 1988. Multistress resistance of Saccharomyces cerevisiae is generated by insertion of Ty into the 5' coding region of the adenylate cyclase gene. Mol. Cell. Biol. 8: 5555–5560.

    PubMed  CAS  Google Scholar 

  • Kaplan, N. L., R. R. Hudson & C. H. Langley, 1989. The ‘hitch-hiking’ effect revisited. Genetics 123: 887–899.

    PubMed  CAS  Google Scholar 

  • Kingsman, A. J. & S. M. Kingsman, 1988. Ty: A retroelement moving forward. Cell 53: 333–335.

    Article  PubMed  CAS  Google Scholar 

  • Kleckner, N., 1990. Regulation of transposition in bacteria. Annu. Rev. Cell Biol. 6: 297–327.

    Article  PubMed  CAS  Google Scholar 

  • Klein, H. L. & T. D. Petes, 1984. Genetic mapping of Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 329–339.

    PubMed  CAS  Google Scholar 

  • Koch, A. L., 1974. The pertinence of the periodic selection phenomenon to prokaryotic evolution. Genetics 77: 127–142.

    PubMed  CAS  Google Scholar 

  • Kondrashov, A. S. & J. F. Crow, 1991. Haploidy or diploidy: which is better? Nature 351: 314–315.

    Article  PubMed  CAS  Google Scholar 

  • Kretschmer, P. J. & S. N. Cohen, 1977. Selected translocation of plasmid genes: frequency and regional specificity of translocation of the Tn3 element. J. Bacteriol. 130: 888–899.

    PubMed  CAS  Google Scholar 

  • Kurlandzka, A., R. F. Rosenzweig & J. Adams, 1991. Identification of adaptive changes in an evolving population of Escherichia coli: the role of regulatory changes with highly pleiotropic effects. Mol. Biol. Evol. 8: 261–281.

    PubMed  CAS  Google Scholar 

  • Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Lewontin, R. C, 1974. The Genetic Basis of Evolutionary Change. Columbia University Press, NY.

    Google Scholar 

  • Liebman, S. W. & S. Picologlou, 1988. Recombination associated with yeast retrotransposons, pp. 63–90 in Viruses of Fungi and Simple Eukaryotes, edited by Y. Koltin and M. J. Leibowitz. Marcel Dekker Inc., NY.

    Google Scholar 

  • Lopilato, J. & A. Wright, 1990. Mechanisms of activation of the cryptic bgl operon of Escherichia coli K12, pp. 435–444 in The Bacterial Chromosome edited by K. Drlica and M. Riley. American Society of Microbiology Publications. Washington, D.C.

    Google Scholar 

  • MacArthur, R. H., 1962. Some generalized theorems of natural selection. Proc. Natl. Acad. Sci. USA 231: 123–128.

    Google Scholar 

  • Mackay, T. F. C, 1985. Transposable element-induced response to artificial selection in Drosophila melanogaster. Genetics 111: 351–374.

    PubMed  CAS  Google Scholar 

  • Mackay, T. F. C, 1986. Transposable element-induced fitness mutations in Drosophila melanogaster. Genet. Res. 48: 77–87.

    Article  Google Scholar 

  • Maimer, E., 1990. Taxonomie und Oekologie von Hefen aus Frucht und Fruchtzubereitungen. Unpublished Ph.D. thesis, Technische Universität München-Weihenstephan.

    Google Scholar 

  • Maynard Smith, J. & J. Haigh, 1974. The hitch-hiking effect of a favourable gene. Genet. Res. 23: 25–35.

    Google Scholar 

  • McClanahan, T. & K. McEntee, 1984. Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol. Cell. Biol. 4: 2356–2363.

    PubMed  CAS  Google Scholar 

  • McDonald, J. F., 1989. The potential evolutionary significance of retroviral-like transposable elements in peripheral populations, pp. 190–205, in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila, Springer-Verlag, New York.

    Chapter  Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Article  Google Scholar 

  • Mellor, J., S. M. Fulton, W. W. Dobson, S. M. Kingsman & A. J. Kingsman, 1985a. A retrovirus-like strategy for expression of a fusion protein encoded by yeast transposon Tyl. Nature 313: 243–246.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, J., A. J. Kingsman & S. M. Kingsman, 1986. Ty, an endogenous retrovirus of yeast? Yeast 2: 145–152.

    Article  PubMed  CAS  Google Scholar 

  • Mellor, J., M. H. Malim, K. Gull, M. F. Tiute, S. McCready, T. Dibbayawan, S. M. Kingsman & A. J. Kingsman, 1985b. Reverse transcriptase activity and Ty RNA are associated with virus-like particles in yeast. Nature 318: 583–586.

    Article  PubMed  CAS  Google Scholar 

  • Misra, S. & D. C. Rio, 1990. Cytotype control of Drosophila P element transposition: The 66 kd protein is a repressor of transposase activity. Cell 62: 269–284.

    Article  PubMed  CAS  Google Scholar 

  • Modi, R., L. H. Castilla, S. Puskas-Rozsa, R. B. Helling & J. Adams, 1992. Genetic changes accompanying increased fitness in evolving populations of Escherichia coli. Genetics 130: 241–249.

    PubMed  CAS  Google Scholar 

  • Morawetz, C, 1987. Effect of irradiation and mutagenic chemicals on the generation of ADH2-constitutive mutants in yeast. Significance for the inducibility of Ty transposition. Mut. Res. 177: 53–60.

    Article  CAS  Google Scholar 

  • Muller, F., K. H. Bruhl, K. Freidel, K. V. Kowallik & M. Ciriacy, 1987. Processing of Tyl proteins and formation of Tyl virus-like particles in Saccharomyces cerevisiae. Mol. Gen. Genet. 207: 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Natsoulis, G., W. Thomas, M. Roghmann, F. Winston & J. D. Boeke, 1989. Transposition in Saccharomyces cerevisiae is nonrandom. Genetics 123: 269–279.

    PubMed  CAS  Google Scholar 

  • Nevers, P., H. J. Reiff & H. Saedler, 1977. Mutations affecting IS1-mediated deletion formation in E. coli. In, DNA Insertion elements plasmids and episomes, pp. 125–128 edited by A. Bukhari, J. Shapiro and S. Adhya. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Orgel, L. E. & F. H. C. Crick, 1980. Selfish DNA: the ultimate parasite. Nature 284: 604–607.

    Article  PubMed  CAS  Google Scholar 

  • Oyen, T. B. & O. S. Gabrielsen, 1983. Non-random distribution of the Tyl elements within nuclear DNA of Saccharomyces cerevisiae. Fed. Eur. Bioch. Soc. 161: 201–206.

    Article  CAS  Google Scholar 

  • Paquin, C. E. & J. Adams, 1983. Frequency of fixation of adaptive mutations is higher in evolving diploid than haploid populations. Nature 302: 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Paquin, C. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Paquin, C. & V. M. Williamson, 1986. Ty insertions at two loci account for most of the spontaneous antimycin A resistance mutations during growth at 15 °C of Saccharomyces cerevisiae strains lacking ADH1. Mol. Cell. Biol. 6: 70–79.

    PubMed  CAS  Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.

    PubMed  CAS  Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, L. E. Ilyinskaya & V. A. Gvozdev, 1988. Outcross-dependent transpositions of copia-like mobile genetic elements in chromosomes of an inbred Drosophila melanogaster stock. Mol. Gen. Genet. 212: 281–286.

    Article  CAS  Google Scholar 

  • Pedersen, M. B., 1985. DNA sequence polymorphisms in the genus Saccharomyces. II. Analysis of the genes RDN1, HIS4, LEU2 and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carlsberg Res. Commun. 50: 263–272.

    Article  CAS  Google Scholar 

  • Pedersen, M. B., 1986. DNA sequence polymorphisms in the genus Saccharomyces. III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res. Commun. 51: 163–183.

    Article  CAS  Google Scholar 

  • Pedersen, M. B., 1988. The use of nucleotide sequence polymorphisms and DNA karyotyping in the identification of brewer's yeast strains and in microbiological control, pp. 180–194 in Modern Methods of Plant Analysis, New Series Vol 7, Beer Analysis, edited by H. F. Linskens and J. F. Jackson. Springer-Verlag, NY.

    Google Scholar 

  • Perrot, P., S. Richerd & M. Valéro, 1991. Transition from haploidy to diploidy. Nature 351: 315–317.

    Article  PubMed  CAS  Google Scholar 

  • Philippsen, P., H. Eibel, J. Gafner & A. Stotz, 1983. Ty elements and the stability of the yeast genome, pp. 189–200 in Gene expression in Yeast. Proceedings of the Alko Yeast Symposium Helsinki, edited by M. Korhola and E. Vaisanen. Foundation for Biotechnical and Industrial Fermentation Research, Helsinki.

    Google Scholar 

  • Picologlou, S., N. Brown & S. W. Liebman, 1990. Mutations in RAD6, a yeast gene encoding a ubiquitin-conjugating enzyme, stimulate retrotransposition. Mol. Cell. Biol. 10: 1017–1022.

    PubMed  CAS  Google Scholar 

  • Picologlou, S., M.E. Dicig, P. Kovarik & S. W. Liebman, 1988. The same configuration of Ty elements promotes different types and frequencies of rearrangements in different yeast strains. Mol. Gen. Genet. 211: 272–281.

    Article  PubMed  CAS  Google Scholar 

  • Rolfe, M., A. Spanos & G. Banks, 1986. Induction of yeast Ty element transcription by ultraviolet light. Nature 319: 339–340.

    Article  CAS  Google Scholar 

  • Rose, M. & F. Winston, 1984. Identification of a Ty insertion within the coding sequence of the S. cerevisiae URA3 gene. Mol. Gen. Genet. 193: 557–560.

    CAS  Google Scholar 

  • Rothstein, R., 1979. Deletions of a tyrosine tRNA gene in S. cerevisiae. Cell 17: 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Sandmeyer, S. B., L. J. Hansen & D. L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, S. & D. L. Haiti, 1986. Distribution of transposable elements in prokaryotes. Theoret. Pop. Biol. 30: 1–16.

    Article  CAS  Google Scholar 

  • Sawyer, S. A., D. E. Dykhuizen, R. F. Dubose, L. Green, T. Mutangadura-Mhlanga, D. F. Wolczyk & D. L. Haiti, 1987. Distribution and abundance of insertion sequences among natural isolates of Escherichia coli. Genetics 115: 51–63.

    PubMed  CAS  Google Scholar 

  • Scherer, S., C. Mann & R. W. Davis, 1982. Reversion of a promoter deletion in yeast. Nature 298: 815–819.

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton, A. E., T. F. C. Mackay & A. J. Leigh Brown, 1990. Transposable element-induced response to artificial selection in Drosophila melanogaster, molecular analysis of selected lines. Genetics 125: 803–811.

    PubMed  CAS  Google Scholar 

  • Simchen, G., F. Winston, C. A. Styles & G. R. Fink, 1984. Ty mediated gene expression of the LYS2 HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81: 2431–2434.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F. W., 1988. Bacterial genetics. A unicorn in the garden. Nature 335: 112–113.

    CAS  Google Scholar 

  • Stavenhagen, J. B. & D. M. Robins, 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55: 247–254.

    Article  PubMed  CAS  Google Scholar 

  • Stucka, R., H. Lochmuller & H. Feldmann, 1989. Ty4, a novel low-copy number element in Saccharomyces cerevisiae: one copy is located in a cluster of Ty elements and tRNA genes. Nuc. Acids Res. 17: 4993–5001.

    Article  CAS  Google Scholar 

  • Syvanen, M., 1984. The evolutionary implications of mobile genetic elements. Ann. Rev. Genet. 18: 271–293.

    Article  PubMed  CAS  Google Scholar 

  • Taguchi, A. K. W., M. Ciriacy & E. T. Young, 1984. Carbon source dependence of transposable element-associated gene activation in Saccharomyces cerevisiae. Mol. Cell. Biol. 4: 61–68.

    PubMed  CAS  Google Scholar 

  • Toh-e, Y., Y. Kaneko, J. Akimaru & Y. Oshima, 1983. An insertion mutation associated with constitutive expression of repressible acid Phosphatase in Saccharomyces cerevisiae. Mol. Gen. Genet. 191: 339–346.

    Article  PubMed  CAS  Google Scholar 

  • Voelker, R. A., J. Graves, W. Gibson & M. Eisenberg, 1990. Mobile element insertions causing mutations in the Drosophila suppressor of sable locus occur in DNase I hypersensitive subregions of 5'-transcribed nontranslated sequences. Genetics 126: 1071–1982.

    PubMed  CAS  Google Scholar 

  • Warmington, J. R., R. B. Waring, C. S. Newlon, K. J. Indge & S. G. Oliver, 1985. Nucleotide sequence characterization of Ty 1-17, a class II transposon from yeast. Nuc. Acids Res. 13: 6679–6693.

    Article  CAS  Google Scholar 

  • Weinstock, K. G., M. F. Mastrangelo, T. J. Burkett, D. J. Garfinkel & J. N. Strathern, 1990. Multimeric arrays of the yeast retrotransposon Ty. Mol. Cell. Biol. 10: 2882–2892.

    PubMed  CAS  Google Scholar 

  • Wilke, C. M. & J. Adams, 1992. Fitness effects of Ty transposition in Saccharomyces cerevisiae. Genetics 131: 31–42.

    PubMed  CAS  Google Scholar 

  • Wilke C. M., S. H. Heidler, N. Brown & S. W. Liebman, 1989. Analysis of yeast retrotransposon Ty insertions at the CANI locus. Genetics 123: 655–665.

    PubMed  CAS  Google Scholar 

  • Williamson, V. M., E. T. Young & M. Ciriacy, 1981. Transposable elements associated with constitutive expression of alcohol dehydrogenase II. Cell 23: 605–614.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, W., M. H. Malim, J. Mellor, A. J. Kingsman & S. M. Kingsman, 1986. Expression strategies of the yeast retrotransposon Ty: a short sequence directs ribosomal frameshifting. Nuc.Acids Res. 14: 7001–7016.

    Article  CAS  Google Scholar 

  • Xu, H. & J. D. Boeke, 1990. Host genes that influence transposition in yeast: the abundance of a rate tRNA regulates Tyl transposition frequency. Proc. Natl. Acad. Sci. USA 87: 8360–8364.

    Article  PubMed  CAS  Google Scholar 

  • Youngren, S. D., J. D. Boeke, N. J. Sanders & D. J. Garfmkel, 1988. Functional organization of the retrotransposon Ty from Saccharomyces cerevisiae: Ty protease is required for transposition. Mol. Cell. Biol. 8: 1421–1431.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wilke, C.M., Maimer, E., Adams, J. (1993). The population biology and evolutionary significance of Ty elements in Saccharomyces cerevisiae . In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics