Skip to main content

Natural genetic engineering in evolution

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

The results of molecular genetics have frequently been difficult to explain by conventional evolutionary theory. New findings about the genetic conservation of protein structure and function across very broad taxonomic boundaries, the mosaic structure of genomes and genetic loci, and the molecular mechanisms of genetic change all point to a view of evolution as involving the rearrangement of basic genetic motifs. A more detailed examination of how living cells restructure their genomes reveals a wide variety of sophisticated biochemical systems responsive to elaborate regulatory networks. In some cases, we know that cells are able to accomplish extensive genome reorganization within one or a few cell generations. The emergence of bacterial antibiotic resistance is a contemporary example of evolutionary change; molecular analysis of this phenomenon has shown that it occurs by the addition and rearrangement of resistance determinants and genetic mobility systems rather than by gradual modification of pre-existing cellular genomes. In addition, bacteria and other organisms have intricate repair systems to prevent genetic change by sporadic physicochemical damage or errors of the replication machinery. In their ensemble, these results show that living cells have (and use) the biochemical apparatus to evolve by a genetic engineering process. Future research will reveal how well the regulatory systems integrate genomic change into basic life processes during evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adzumi, A. & K. Mizuuchi, 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257–266.

    Article  Google Scholar 

  • Akam, M., 1989. Hox and HOM: homologous gene clusters in insects and vertebrates. Cell 57: 347–349.

    Article  PubMed  CAS  Google Scholar 

  • Alt, F. W., T. K. Blackwell & G.D. Yancopoulos, 1987. Development of the primary antibody repertoire. Science 238: 1079–1087.

    Article  PubMed  CAS  Google Scholar 

  • Baker, M. E. & M. H. Saier, Jr., 1990. A common ancestor for bovine lens fiber major intrinsic protein, soybean nodulin-26 protein, and E. coli glycerol facilitator. Cell 60: 185–186.

    Article  PubMed  CAS  Google Scholar 

  • Beerman, S., 1977. The diminution of heterochromatic chromosomal segments in Cyclops (Crustacea, Copepoda). Chromosoma 60: 297–344.

    Article  Google Scholar 

  • Beerman, S. & G. F. Meyer, 1980. Chromatin rings as products of chromatin diminution in Cyclops. Chromosoma 77: 277–283.

    Article  Google Scholar 

  • Berg, D.E., 1989. Transposon Tn5. pp. 185–210 in Mobile DNA (D.E. Berg and M. M. Howe, eds) American Society for Microbiology.

    Google Scholar 

  • Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Blackburn, E. H., 1991. Structure and function of tclomercs. Nature 350: 569–573.

    Article  PubMed  CAS  Google Scholar 

  • Blackburn, E. H. & J. W. Szostak, 1984. The molecular structure of centromeres and telomeres. Ann. Rev. Biochem. 53: 163–194.

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, T. K. & F. W. Alt, 1989. Mechanism and developmental program of Immunoglobulin gene rearrangement in mammals. Ann. Rev. Genet. 23: 605–636.

    Article  PubMed  CAS  Google Scholar 

  • Blake, C. C. F., 1985. Exons and the evolution of proteins. Int. Rev. Cytol. 93: 149–185.

    Article  PubMed  CAS  Google Scholar 

  • Boeke, J. D. & V. Corces, 1989. Transcription and reverse transcription of retrotransposons. Ann. Rev. Microbiol. 43: 403–434.

    Article  CAS  Google Scholar 

  • Boveri, T., 1887. Öber Differenzierung der Zellkerne während der Furchung des Eies von Ascaris megalocephala. Anat. Anz. 2: 688–693.

    Google Scholar 

  • Bregliano, J.-C, & M. G. Kidwell, 1983. Hybrid dysgenesis determinants, pp. 363–410 in Mobile Genetic Elements (J. A. Shapiro, ed.) Academic Press.

    Google Scholar 

  • Brosius, J., 1991. Retroposons-Seeds of evolution. Science 251: 753.

    Article  PubMed  CAS  Google Scholar 

  • Cairns, J., J. Overbaugh & S. Miller, 1988. The origin of mutants. Nature 335: 142–145.

    Article  PubMed  CAS  Google Scholar 

  • Casadesús, J. & J. Roth, 1989. Absence of insertions among spontaneous mutants of Salmonella typhimurium. Molec. Gen. Genet. 216: 210–216.

    Article  PubMed  Google Scholar 

  • Chandler, V. & V. Walbott, 1986. DNA modification of a maize transposable element correlated with loss of activity. Proc. Nat. Acad. Sci. USA 83: 1767–1771.

    Article  PubMed  CAS  Google Scholar 

  • Deininger, P. L., 1989. SINES: Short interspersed repeated DNA elements in higher eucaryotes. pp. 619–636 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.

    Google Scholar 

  • Donehower, L. & D. Gillespie, 1979. Restriction site periodicities in highly repetitive DNA of primates. J. Mol. Biol. 134: 805–834.

    Article  PubMed  CAS  Google Scholar 

  • Dover, G. A., 1982. Molecular drive: a cohesive mode of species evolution. Nature 299: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R., 1989. P elements in Drosophila melanogaster. pp. 437–484 in Mobile DNA (D. E. Berg & M. M. Howe, eds) American Society for Microbiology.

    Google Scholar 

  • Errede, B., T. S. Cardillo, G. Wever & F. Sherman, 1981. ROAM mutations causing increased expression of yeast genes: Their activation by signals directed toward conjugation functions and their formation by insertions of Ty1 repetitive elements. Cold Spr. Harb. Symp. Quant. Biol. 45: 593–607.

    Article  CAS  Google Scholar 

  • Finnegan, D. J., 1989. The I factor and I-R Hybrid dysgenesis in Drosophila melanogaster, pp. 503–518 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Foster, T. J., 1983. Plasmid-determined resistance to antimicrobial drugs and toxic metal ions in bacteria. Microbiol. Rev. 47: 361–409.

    PubMed  CAS  Google Scholar 

  • Galas, D. & M. Chandler, 1989. Bacterial insertion sequences, pp. 109–162 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Gall, J., 1986. The Molecular Biology of Ciliated Protozoa. Academic Press, Orlando.

    Google Scholar 

  • Gibbs, C. P., B.-Y. Reimann, E. Schultz, A. Kaufmann, R. Hass & T. F. Meyer, 1989. Reassortment of pilin genes in Neisseria gonorrhoeae occurs by two distinct mechanisms. Nature 338: 651–652.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978. Why genes in pieces? Nature 271: 501.

    Article  PubMed  CAS  Google Scholar 

  • Glasgow, A. C, K. T. Hughes & M. I. Simon, 1989. Bacterial DNA inversion systems, pp. 637–660 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Goff, S. A., T. M. Klein, B. A. Roth, M. E. Fromm, K. C. Cone, J. P. Radicella & V. L. Chandler, 1990. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues. EMBO J. 9: 2517–2522.

    PubMed  CAS  Google Scholar 

  • Gottesman, S., 1984. Bacterial regulation: global regulatory networks. Ann. Rev. Genet. 18: 415–441.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, S. D. & J. J. Scocca, 1988. Identification and arrangement of the DNA sequence recognized in specific transformation of Neisseria gonorrhoeae. Proc. Nat. Acad. Sci. USA 85: 6982–6986.

    Article  PubMed  CAS  Google Scholar 

  • Gough, N., 1983. Has terminal transferase finally made it as a mutator of antibody genes? Trends Biochem. Sci.: 227–228.

    Google Scholar 

  • Greslin, A. F., D. M. Prescott, Y. Oka, S. H. Loukin & J. C. Chappell, 1989. Reordering of nine exons is necessary to form a functional actin gene in Oxytricha nova. Proc. Nat. Acad. Sci. USA 86: 6264–6268.

    Article  PubMed  CAS  Google Scholar 

  • Hall, B. G., 1988. Adaptive evolution that requires multiple spontaneous mutations. I. Mutations involving an insertion sequence. Genetics 120: 887–897.

    PubMed  CAS  Google Scholar 

  • Heffron, F., 1983. Tn3 and its relatives, pp. 223–260 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.

    Google Scholar 

  • Helinski, D. R., S. N. Cohen, D. B. Clewell, D. A. Jackson & A. Hollaender, 1985. Plasmids in Bacteria. Plenum, New York.

    Book  Google Scholar 

  • Highton, P. J., Y. Chang & R. J. Myers, 1990. Evidence for the exchange of segments between genomes during the evolution of lambdoid bacteriophages. Molec. Microbiol. 4: 1329–1340.

    Article  CAS  Google Scholar 

  • Hoopes, B. C. & W. R. McClure, 1987. Strategies in regulation of transcription initiation, pp. 1231–1240, In Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al., American Society for Microbiology, Washington.

    Google Scholar 

  • Hutchison, C. A., S. C. Hardies, D. D. Loeb, W. R. Shehee & M. H. Edgell, 1989. LINES and related retroposons: Long interspersed repeated sequences in the eucaryotic genome, pp. 593–618 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Iida, S., J. Meyer & W. Arber, 1983. Prokaryotic IS Elements, pp. 159–221 in Mobile Genetic Elements, edited by J. A. Shapiro. Academic Press.

    Google Scholar 

  • Inouye, S., T. Franceschini & M. Inouye, 1983. Structural similarities between the development-specific protein S from a Gram-negative bacterium, Myxococcus xanthus, and calmodulin. Proc. Nat. Acad. Sci. USA 80: 6829–6833.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, P. F. & S. L. McKnight, 1989. Eukaryotic transcriptional regulatory proteins. Ann. Rev. Biochem. 58: 799–839.

    Article  PubMed  CAS  Google Scholar 

  • Klar, A. J. S., 1989. The interconversion of yeast mating type: Saccharomyces cerevisiae and Schizosaccharomyces pombe, pp. 671–692 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Kleckner, N., 1989. Transposon Tn10, pp. 227–268 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Kushner, S. R., 1987. DNA repair. In Escherichia coli and Salmonella Typhymurium (F. C. Neidhardt et al., eds), American Society for Microbiology, 1044–1053.

    Google Scholar 

  • Laski, F. A., D. C. Rio & G. M. Rubin, 1986. Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing. Cell 44: 7–19.

    Article  PubMed  CAS  Google Scholar 

  • Lee, M. G. & P. Nurse, 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327: 31–35.

    Article  PubMed  CAS  Google Scholar 

  • Lindquist, S. & E. A. Craig, 1988. The heat-shock proteins. Ann. Rev. Genet. 22: 631–677.

    Article  PubMed  CAS  Google Scholar 

  • Marinus, M. G., 1987. Methylation of DNA, pp. 697–702 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

    Google Scholar 

  • McCann, J., N. E. Spingarn, J. Kobori & B. N. Ames, 1975. Detection of carcinogens as mutagens: bacterial tester strains with R factor plasmids. Proc. Nat. Acad. Sci. USA 72: 979–983.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. USA 36: 344–355.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1951. Chromosome organization and genic expression. Cold Spr. Harb. Symp. Quant. Biol. 16: 13–47.

    Article  CAS  Google Scholar 

  • McClintock, B., 1956. Controlling elements and the gene. Cold Spr. Harb. Symp. Quant. Biol. 21: 197–216.

    Article  CAS  Google Scholar 

  • McClintock, B., 1965. The control of gene action in maize. Brookhaven Symp. Biol. 18: 162–184.

    Google Scholar 

  • McClintock, B., 1967. Genetic systems regulating gene expression during development. Develop. Biol. Suppl. 1: 84–112.

    Google Scholar 

  • McClintock, B., 1978. Mechanisms that rapidly reorganize the genome. Stadler Symp. 10: 25–47.

    Google Scholar 

  • McClintock, B., 1984. The significance of responses of the genome to challenge. Science 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • McGinnis, N., M. A. Kuziora & W. McGinnis, 1990. Human Hox-4.2 and Drosophila Deformed encode similar regulatory specificities in Drosophila embryos and larvae. Cell 63: 969–976.

    Article  PubMed  CAS  Google Scholar 

  • Mercier, J., J. Lachapelle, F. Couture, M. Lafond, G. Vezina, M. Boissinot & R. C. Levesque, 1990. Structural and functional characterization of tnpI, a recombinase locus in Tn21 and related β-lactamase transposons. J. Bacteriol. 172: 3745–3757.

    PubMed  CAS  Google Scholar 

  • Meyer, T. F. 1987. Molecular basis of surface antigen variation in Neisseria. Trends in Genet. 3: 319–324.

    Article  CAS  Google Scholar 

  • Mittler, J. & R. E. Lenski, 1990. Further experiments on excisions of Mu from Escherichia coli MCS2 cast doubt on directed mutation hypothesis. Nature 344: 173–175.

    Article  PubMed  CAS  Google Scholar 

  • Modrich, P., 1987. DNA mismatch correction. Ann. Rev. Biochem. 56: 435–466.

    Article  PubMed  CAS  Google Scholar 

  • Müller, M. M., T. Gerster & W. Schaffner, 1988. Enhancer sequences and the regulation of gene transcription. Eur. J. Biochem. 176: 485–495.

    Article  PubMed  Google Scholar 

  • Peschke, V. M., R. L. Phillips & B. G. Gengenbach, 1987. Discovery of transposable element activity among progeny of tissue culture-derived maize plants. Science 238: 804–807.

    Article  PubMed  CAS  Google Scholar 

  • Ptashne, M., 1986. A Genetic Switch. Cell/Blackwell, Cambridge MA and Palo Alto.

    Google Scholar 

  • Riley, M. & S. Krawiec, 1987. Genome organization, pp. 967–981 in Escherichia coli and Salmonella typhimurium, edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

    Google Scholar 

  • Rogers, J., 1985. The origin and evolution of retroposons. Int. Rev. Cytol. 93: 231–279.

    Google Scholar 

  • Rosenfeld, M. G., C. K. Glass, S. Adler, E. B. Crenshaw III, X. He, S. A. Lira, H. P. Elsholtz, H. J. Mangalam, J. M. Holloway, C. Nelson, V. R. Albert & H. A. Ingraham, 1989. Response and binding elements for ligand-dependent positive transcription factors integrate positive and negative regulation of gene expression. Cold Spr. Harb. Symp. Quant. Biol. 53: 545–556.

    Article  Google Scholar 

  • Sadowski, P., 1986. Site-specific recombinases: Changing partners and doing the twist. J. Bacteriol. 165: 341.

    PubMed  CAS  Google Scholar 

  • Scocca, J. J., 1990. The role of transformation in the variability of the Neisseria gonorrhoeae cell surface. Molec. Microbiol. 4: 321–327.

    Article  CAS  Google Scholar 

  • Seifert, H. S., R. A. Ajioka, C. Marchai, P. F. Sparling & M. So, 198.DNA transformation leads to pilin antigenic variation in Neisseria gonorrhoeae. Nature 336: 392–395.

    Google Scholar 

  • Shapiro, J. A., 1977. DNA insertion elements and the evolution of chromosome primary structure. Trends in Biochem. Sci. 2: 622–627.

    Article  Google Scholar 

  • Shapiro, J. A., 1983. Mobile Genetic Elements. Academic Press, New York.

    Google Scholar 

  • Shapiro, J., 1984. Observations on the formation of clones containing araB-lacZ cistron fusions. Molec. Gen. Genet. 194: 79–90.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J. A., 1991. Genomes as smart systems. Genetica 84: 3–4.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, J. A., A. I. Bukhari & Adhya, 1977. New Pathways in the evolution of chromosome structure, pp. 3–13 in DNA Insertion Elements, Plasmids and Episomes, edited by A. I. Bukhari, J. A. Shapiro and S. Adhya. Cold Spring Harbor Press.

    Google Scholar 

  • Shapiro, J. A. & D. Leach, 1990. Action of a transposable element in coding sequence fusions. Genetics 126: 293–299.

    PubMed  CAS  Google Scholar 

  • Smith, C. W. J., J. G. Patton & B. Nadal-Ginard, 1989. Alternative splicing in the control of gene expression. Ann. Rev. Genet. 23: 527–577.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H. O., D. B. Danner & R. A. Reich, 1981. Genetic transformation. Ann. Rev. Biochem. 50: 41–68.

    Article  PubMed  CAS  Google Scholar 

  • Stahl, F. W., 1979. Special sites in generalized recombination. Ann. Rev. Genet. 13: 7–24.

    Article  PubMed  CAS  Google Scholar 

  • Stock, J. B., A. M. Stock & J. M. Mottonen, 1990. Signal transduction in bacteria. Nature 344: 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Swanson, J. & J. M. Koomey, 1989. Mechanisms for variation of pili and outer membrane protein II in Neisseria gonorrhoeae, pp. 743–762 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Trifonov, E. N. & V. Brendel, 1986. GNOMIC: A Dictionary of Genetics Codes. Balaban, Philadelphia.

    Google Scholar 

  • Walker, G. C, 1987. The SOS response of Escherichia coli, pp. 1346–1357 in Escherichia coli and Salmonella typhimurium edited by F. C. Neidhardt et al. American Society for Microbiology, Washington.

    Google Scholar 

  • Watanabe, T., 1963. Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27: 87–115.

    PubMed  CAS  Google Scholar 

  • Weiner, A. M., P. L. Deininger & A. Efstratiadis. 1986. Nonviral retroposons: Genes, pseudogenes and transposable elements generated by the reverse flow of genetic information. Ann. Rev. Biochem. 55: 631–661.

    Article  PubMed  CAS  Google Scholar 

  • Willets, N. S. & B. Wilkins, 1984. Processing of DNA during bacterial conjugation. Microbiol. Rev. 48: 24–41.

    Google Scholar 

  • Yao, M.-C, 1989. Site-specific chromosome breakage and DNA deletion in ciliates, pp. 715–734 in Mobile DNA, edited by D. E. Berg & M. M. Howe. American Society for Microbiology.

    Google Scholar 

  • Zakian, V., 1989. Structure and function of telomeres. Ann. Rev. Genet. 23: 579–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shapiro, J.A. (1993). Natural genetic engineering in evolution. In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics