Skip to main content

Genetic instability and rapid speciation: are they coupled?

  • Chapter
Transposable Elements and Evolution

Part of the book series: Contemporary Issues in Genetics and Evolution ((CIGE,volume 1))

Abstract

Models of rapid speciation by fixation of underdominant chromosomal rearrangements are constrained by multiple conditions on population structure and chromosomal performance. Realistic population conditions impose long periods of time to fixation or reproductive isolation, even under a model of accumulation of successive advantageous slightly underdominant rearrangements. However, when increased mutation rates are considered, fixation time is significantly reduced. Evidence is presented of high rates of chromosomal rearrangement production under genomic stress, such as in inbred and interspecific crosses. These episodes of high instability are most probably the result of mobile element transpositions, since transposition is also increased under genomic stress. Nonetheless, the evolutionary value of mobile elements to speed up speciation will be only significant if their mutagenic potential is activated in concert with population scenarios favorable to speciation events. Although this coupling needs to be demonstrated, many models of rapid speciation are carried out under population conditions favoring inbreeding and/or hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askew, R. R., 1968. Considerations on speciation in Chalcidoidea (Hymenoptera). Evolution 22: 642–645.

    Article  Google Scholar 

  • Baker, W. K., 1968. Position-effect variegation. Adv. Genet. 14: 133–169.

    Article  PubMed  CAS  Google Scholar 

  • Barton, N. H. & B. O. Bengtsson, 1986. The barrier to genetic exchange between hybridising populations. Heredity 56: 357–376.

    Article  Google Scholar 

  • Barton, N. H. & G. M. Hewitt, 1985. Analysis of hybrid zones. Ann. Rev. Ecol. Syst. 16: 113–148.

    Article  Google Scholar 

  • Barton, N. H., 1979. Gene flow past a cline. Heredity 43: 333–339.

    Article  Google Scholar 

  • Barton, N. H., 1983. Multilocus clines. Evolution 37: 454–471.

    Article  Google Scholar 

  • Belgovsky, M. L., 1937. A comparison of the frequency of induced mutations in D. simulans and its hybrid with D. melanogaster. Genetica 19: 370–386.

    Article  Google Scholar 

  • Bengtsson, B. O. & W. F. Bodmer, 1976. On the increase of chromosomal mutations under random mating. Theor. Popul. Biol. 9: 260–281.

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson, B. O., 1985. The flow of genes through a genetic barrier, pp. 31–42 in Evolution. Essays in Honor of J. Maynard-Smith, edited by P. J. Greenwood, P. H. Harvey & M. Slatkin. Camb. Univ. Press, Cambridge.

    Google Scholar 

  • Berg, D. E. & M. M. Howe, 1989. Mobile DNA. American Soc. for Microbiology. Washington, D.C.

    Google Scholar 

  • Biémont, C, 1991. Are imprinting and inbreeding two related phenomena? Genet. Sel. Evol. 23: 85–102.

    Article  Google Scholar 

  • Biémont, C, A. Aouar & C. Arnault, 1987. Genome reshuffling of the copia element in an inbred line of Drosophila melanogaster. Nature 329: 742–744.

    Article  PubMed  Google Scholar 

  • Biémont, C, C. Arnault & A. Heizmann, 1990. Massive changes in genomic locations of P elements in an inbred line of Drosophila melanogaster. Naturwissenschaften 77: 485–488.

    Article  PubMed  Google Scholar 

  • Bingham, P. M., M. G. Kidwell & G. M. Rubin, 1982. The molecular basis of P-M hybrid dysgenesis: the role of the P element, a P strain-specific transposon family. Cell 29: 995–1004.

    Article  PubMed  CAS  Google Scholar 

  • Blackman, R. K., R. Grimaila, M. M. D. Koehler & W. M. Gelbart, 1987. Mobilization of hobo elements residing within decapentaplegic gene complex: suggestion of a new hybrid dysgenesis system in Drosophila melanogaster. Cell 49: 497–505.

    Article  PubMed  CAS  Google Scholar 

  • Bregliano, J. C, G. Picard, A. Bucheton, A. Pelisson, J. M. Lavige & P. L'Heritier, 1980. Hybrid dysgenesis in Drosophila melanogaster. Science 207: 606–611.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J. F. Y., E. Montgomery & C. Langley, 1984. Apparent absence of transposable elements related to the P elements of D. melanogaster in other species of Drosophila. Nature 310: 330–332.

    Article  PubMed  CAS  Google Scholar 

  • Bush, G. L., 1975. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6: 339–364.

    Article  Google Scholar 

  • Bush, G. L., 1981. Stasipatric speciation and rapid evolution in animals, pp. 201–219 in Evolution and Speciation: Essays in Honor of M. J. D. White, edited by W. R. Atchley & D. S. Woodraft. Cambridge University Press, Cambridge.

    Google Scholar 

  • Capy, P., F. Chackrani, F. Lemeunier, D. L. Hartl & J. R. David, 1990. Active mariner transposable elements are widespread in natural populations of Drosophila simulans. Proc. Royal Soc, Lond. B 242: 57–60.

    Article  CAS  Google Scholar 

  • Carson, H. L., 1982. Speciation as a major reorganization of poly genie balances, pp. 411–433 in Mechanisms of Speciation, edited by C. Barigozzi. Alan R. Liss, New York.

    Google Scholar 

  • Charlesworth, B. & C. H. Langley, 1991. Populations genetics of transposable elements in Drosophila, pp. 150–176 in Evolution at the Molecular Level, edited by R. Selander, A. G. Clark and T. S. Whittam. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Charlesworth, B., R. Lande & M. Slatkin, 1982. A neo-Darwinian commentary on macroevolution. Evolution 36: 474–498.

    Article  Google Scholar 

  • Coen, E. C. & R. Carpenter, 1986. Transposable elements in Antirrhinum majus: generators of genetic diversity. Trends in Genetics 292–296.

    Google Scholar 

  • Coluzzi, M., 1982. Spatial distribution of chromosomal inversions and speciation in anopheline mosquitoes, pp. 143–153 in Mechanisms of Speciation, edited by C. Barigozzi. Alan. R. Liss, New York.

    Google Scholar 

  • Coyne, J. A., 1989. Mutation rates in hybrids between sibling species of Drosophila. Heredity 63: 155–162.

    Article  PubMed  Google Scholar 

  • Crow, J. F., W. R. Engels & C. Denniston, 1990. Phase 3 of Wright shifting-balance theory. Evolution 44: 233–247.

    Article  Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the evolutionary process. Columbia University Press, New York.

    Google Scholar 

  • Dowsett, A. P., 1983. Closely related species of Drosophila can contain different libraries of middle repetitive DNA sequences. Chromosoma 88: 104–108.

    Article  PubMed  CAS  Google Scholar 

  • Eggleston, W. B., D. M. Johnson-Schlitz & W. R. Engels, 1988. P-M hybrid dysgenesis does not mobilize other transposable element families in D. melanogaster. Nature 331: 368–370.

    Article  PubMed  CAS  Google Scholar 

  • Engels, W. R. & C. R. Preston, 1984. Formation of chromosome rearrangements by P factors in Drosophila. Genetics 107: 657–678.

    PubMed  CAS  Google Scholar 

  • Evgenev, M. B., G. N. Yenikolopov, N. I. Peunova & V. Ilyin, 1982. Transposition of mobile genetic elements in interspecific hybrids of Drosophila. Chromosoma 85: 375–386.

    Article  CAS  Google Scholar 

  • Fitzpatrick, G. F. & J. A. Sved, 1986. High levels of fitness modifiers induced by hybrid dysgenesis in Drosophila melanogaster. Genet. Res. 48: 89–94.

    Article  Google Scholar 

  • Fontdevila, A., 1987. The unstable genome: An evolutionary approach. Genet. Iber. 39: 315–349.

    Google Scholar 

  • Futuyma, D. J. & G. C. Mayer, 1980. Non-allopatric speciation in animals. Syst. Zool. 29: 254–271.

    Article  Google Scholar 

  • Gelbart, W. M. & R. K. Blackman, 1989. The hobo element of Drosophila melanogaster. Progress Nuc. Acid. Res. and Mol. Biol. 36: 37–46.

    Article  CAS  Google Scholar 

  • Gerasimova, T. I., A. B. Ladvishchenko, V. A. Mogila, S. G. Georgieva, S. L. Kiselev & D. V. Maksymiv, 1990. Transposition bursts and chromosome rearrangements in unstable Drosophila lines. Genetika 26: 399–411.

    PubMed  CAS  Google Scholar 

  • Gershenson, S. M., 1986. Viruses as mutagenic factors. Mutation Res. 167: 203–213.

    Article  PubMed  CAS  Google Scholar 

  • Gerstel, D. U. & J. A. Burns, 1966. Chromosomes of unusual length in hybrids between two species of Nicotiana. Chromosomes Today 1: 41–56.

    Google Scholar 

  • Gerstel, D. U. & J. A. Burns, 1967. Phenotypic and chromosomal abnormalities associated with the introduction of heterochromatin from Nicotiana otophora into N. tabacum. Genetics 56: 483–502.

    PubMed  CAS  Google Scholar 

  • Green, M. M., 1980. Transposable elements in Drosophila and other diptera. Ann. Rev. Genet. 14: 109–120.

    Article  PubMed  Google Scholar 

  • Hagele, K., 1984. Different hybrid effects in reciprocal crosses between Chironomus thummi thummi and Ch. th. piger including spontaneous chromosome aberrations and sterility. Genetica 63: 105–111.

    Article  Google Scholar 

  • Hall, W. P., 1983. Modes of speciation and evolution in the sceloporine iguanid lizards. I. Epistemology of the comparative approach and introduction to the problem, pp. 643–679 in Advances in Herpetology and Evolutionary Biology, edited by A. G. J. Rhodin and K. Miyata. Mus. Comp. Zool., Harvard Univ., Cambridge, Mass.

    Google Scholar 

  • Harada, K., K. Yukuhiro & T. Mukai, 1990. Transposition rates of movable genetic elements in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 87: 3248–3252.

    Article  PubMed  CAS  Google Scholar 

  • Hatzopoulos, P., M. Monastirioti, G. Yannopoulos & C. Louis, 1987. The instability of the TE-like mutation Dp(2;2)GYL of Drosophila melanogaster is intimately associated with the hobo element. EMBO J. 6: 3091–3096.

    PubMed  CAS  Google Scholar 

  • Haymer, D.S. & J. L. Marsh, 1986. Germ line and somatic instability of a white mutation in Drosophila mauritiana due to a transposable genetic element. Developmental Genetics 6: 281–291.

    Article  PubMed  CAS  Google Scholar 

  • Hedrick, P. W., 1981. The establishment of chromosomal variants. Evolution 35: 322–332.

    Article  Google Scholar 

  • Hey, J., 1989. Speciation via hybrid dysgenesis: negative evidence from the Drosophila affinis subgroup. Genetica 78: 97–104.

    Article  Google Scholar 

  • Hoffman, A. A. & P. A. Parsons, 1991. Evolutionary genetics and environmental stress. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Kidwell, M. G., J. F. Kidwell & J. A. Sved, 1977. Hybrid dysgenesis in Drosophila melanogaster. a syndrome of aberrant traits including mutation, sterility, and male recombination. Genetics 86: 813–833.

    PubMed  CAS  Google Scholar 

  • Lambert, M. E., J. F. McDonald & I. B. Weinstein (eds.), 1988. Eukaryotic Transposable Elements as Mutagenic Agents. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Lande, R., 1979. Effective deme sizes during long-term evolution estimated from rates of chromosomal rearrangement. Evolution 33: 234–251.

    Article  Google Scholar 

  • Lande, R., 1985. The fixation of chromosomal rearrangements in a subdivided population with local extinction and colonization. Heredity 54: 323–332.

    Article  PubMed  Google Scholar 

  • Lewis, H., 1962. Catastrophic selection as a factor in evolution. Evolution 16: 257–271.

    Article  Google Scholar 

  • Mackay, T. F. C, 1987. Transposable element-induced quantitative genetic variation in Drosophila, pp. 219–235 in Proceedings of the Second International Conference on Quantitative Genetics, edited by B. S. Weir, E. J. Eisen, M. M. Goodman and G. Namkoong. Sinauer, Sunderland, Mass.

    Google Scholar 

  • Marin, I., M. Labrador & A. Fontdevila. The evolutionary history of Drosophila buzzatii. XXIII. High content of nonsatellite repetitive DNA in D. buzzatii and in its sibling D. koepferae. Genome (accepte

    Google Scholar 

  • Mayr, E., 1954. Change of genetic environment and evolution, pp. 157–180 in Evolution as a Process, edited by J. Huxley, A. C. Hardy and E. B. Ford. G. Allen & Unwin, London.

    Google Scholar 

  • Mayr, E., 1978. Modes of Speciation (Review of), by M. J. D. White, Syst. Zool. 27: 478–482.

    Article  Google Scholar 

  • Mayr, E., 1982a. Processes of speciation in animals, pp. 1–19 in Mechanisms of speciation, edited by C. Barigozzi. A. R. Liss, Inc. New York.

    Google Scholar 

  • Mayr, E., 1982b. Speciation and macroevolution. Evolution 36: 1119–1122.

    Article  Google Scholar 

  • McClintock, B., 1950. The origin and behavior of mutable loci in maize. Proc. Nat. Acad. Sci. USA. 36: 344–355.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1951. Chromosome organization and genic expression. Cold Spring Harbor Symp. Quant. Biol. 16: 13–47.

    Article  PubMed  CAS  Google Scholar 

  • McClintock, B., 1984. The significances of responses of the genome to challenge. Science 226: 792–801.

    Article  PubMed  CAS  Google Scholar 

  • McDonald, J. F., 1990. Macroevolution and retroviral elements. BioScience 40: 183–191.

    Article  Google Scholar 

  • McDonald, J. F., D. J. Strand, M. E. Lambert & I. B. Weinstein, 1987. The responsive genome: evidence and evolutionary implications, pp. 239–263 in Development as an Evolutionary Process, edited by R. Raff and E. Raff. Alan R. Liss, New York.

    Google Scholar 

  • Miller, D. D., 1950. Observations on two cases of interspecific hybridization with Drosophila athabasca. Amer. Natur. 84: 81–93.

    Article  Google Scholar 

  • Moran, C. & A. Torkamanzehi, 1990. P-elements and quantitative variation in Drosophila, pp. 99–117 in Ecological and Evolutionary Genetics of Drosophila, edited by J. S. F. Barker, W. T. Starmer and R. J. MacIntyre. Plenum Press, N.Y. and London.

    Google Scholar 

  • Muller, H. J., 1956. On the relation between chromosome changes and gene mutations. Brookhaven Symposia in Biology 8: 126–147.

    PubMed  Google Scholar 

  • Naveira, H. & A. Fontdevila, 1985. The evolutionary history of Drosophila buzzatii. IX. High frequencies of new chromosome rearrangements induced by introgressive hybridization. Chromosoma 91: 87–94.

    Article  PubMed  CAS  Google Scholar 

  • Naveira, H. & A. Fontdevila, 1986. The evolutionary history of Drosophila buzzatii. XII. The genetic basis of sterility in hybrids between D. buzzatii and its sibling D. sendo from Argentina. Genetics 114: 841–857.

    PubMed  CAS  Google Scholar 

  • O'Hare, K., 1987. Chromosome plasticity and transposable elements in Drosophila. TIG 3: 87–88.

    Article  Google Scholar 

  • Paquin, C. E. & V. M. Williamson, 1984. Temperature effects on the rate of Ty transposition. Science 226: 53–55.

    Article  PubMed  CAS  Google Scholar 

  • Pasyukova, E. G., E. S. Belyaeva, G. L. Kogan, M. V. Pavlova, L. Z. Kaidanov & V. A. Gvozdev, 1986. Concerted transpositions of mobile genetic elements coupled with fitness changes in Drosophila melanogaster. Mol. Biol. Evol. 3: 299–312.

    PubMed  CAS  Google Scholar 

  • Preston, C. R. & W. R. Engels, 1989. Spread of transposable elements in inbred lines of Drosophila melanogaster. Progress Nuc, Acid Res. and Mol. Biol. 36: 71–85.

    Article  CAS  Google Scholar 

  • Reig, O. A., 1989. Karyotypic repatterning as one triggering factor in cases of explosive speciation, pp. 246–289 in Evolutionary Biology of Transient Unstable Populations, edited by A. Fontdevila. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Ruiz, A., A. Fontdevila & M. Wasserman, 1982. The evolutionary history of Drosophila buzzatii. HI. Cytogenetic relationships between two sibling species of the buzzatii cluster. Genetics 101: 503–518.

    PubMed  CAS  Google Scholar 

  • Sankaranarayanan, K., 1988. Mobile genetic elements, spontaneous mutations and the assessment of genetic radiation hazards in man, pp. 319–336 in Eukaryotic Transposable Elements as Mutagenic Agents, edited by M. E. Lambert, J. F. McDonald and I. B. Weinstein. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Schmidt, E. R., 1984. Clustered and interspersed repetitive DNA sequence family of Chironomus. J. Mol. Biol. 178: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Schwab, M., 1987. Oncogenes and tumor supressor genes in Xiphophorus. Trends in Genetics 3: 38–41.

    Article  Google Scholar 

  • Shaw, D. D., P. Wilkinson & D. J. Coates, 1983. Increased chromosomal mutation rates after hybridization between two subspecies of grasshoppers. Science 220: 1165–1167.

    Article  PubMed  CAS  Google Scholar 

  • Sites, J. W., Jr. & C. Moritz, 1987. Chromosomal evolution and speciation revisited. Syst. Zool. 36: 153–174.

    Article  Google Scholar 

  • Spirito, F., C. Rossi & M. Rizzoni, 1983. Reduction of gene flow due to partial sterility of heterozygotes for a chromosome mutation. I. Studies on a ‘neutral’ gene not linked to the chromosome mutation in a two population model. Evolution 37: 785–797.

    Article  Google Scholar 

  • Spirito, F., C. Rossi & M. Rizzoni, 1991. Populational interactions among underdominant chromosome rearrangements help them to persist in small demes. J. evol. Biol. 3: 501–512.

    Article  Google Scholar 

  • Stacey, S. N., R. A. Lansman, H. W. Brock & T. A. Grigliatti, 1986. Distribution and conservation of mobile elements in the genus Drosophila. Mol. Biol. Evol. 3: 522–534.

    PubMed  CAS  Google Scholar 

  • Stebbins, G. L., 1958. The inviability, weakness, and sterility of interspecific hybrids. Adv. Genet. 9: 147–215.

    Article  PubMed  CAS  Google Scholar 

  • Strand, D. J. & J. F. McDonald, 1985. Copia is transcriptionally responsive to environmental stress. Nucleic Acids Res. 13: 4401–4410.

    Article  PubMed  CAS  Google Scholar 

  • Sturtevant, A. H. & G. W. Beadle, 1936. The relations of inversions in the X chromosome of Drosophila melanogaster to crossing over and nondisjunction. Genetics 21: 554–604.

    PubMed  CAS  Google Scholar 

  • Sturtevant, A. H., 1939. High mutation frequency induced by hybridization. Proc. Natl. Acad. Sci. USA 25: 308–310.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, J. B., 1982. Rate of accumulation of reproductive isolation by chromosome rearrangements. Am. Nat. 120: 510–532.

    Article  Google Scholar 

  • White, M. J. D., 1978a. Modes of speciation. W. H. Freeman and Co. San Francisco.

    Google Scholar 

  • White, M. J. D., 1978b. Chain processes in chromosomal speciation. Syst. Zool. 27: 285–298.

    Article  Google Scholar 

  • White, M. J. D., 1968. Models of speciation. Science 159: 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  • White, M. J. D., 1974. Speciation in the Australian morabine grasshoppers. The cytogenic evidence, pp. 57–68 in Genetic Mechanisms of Speciation in Insects, edited by M. J. D. White. Australian and New Zealand Book Co., Sydney.

    Chapter  Google Scholar 

  • Woodruff, R. C, B. E. Slatko & J. N. Thompson, 1983. Factors affecting mutation rates in natural populations, pp. 37–124 in The Genetics and Biology of Drosophila, v. 3c, edited by M. Ashburner, H. L. Carson & J. N. Thompson, Jr. Academic Press, London.

    Google Scholar 

  • Wright, S., 1941. On the probability of fixation of reciprocal translocations. Amer. Natur. 75: 513–522.

    Article  Google Scholar 

  • Wright, S., 1970. Random drift and the shifting balance theory of evolution, pp. 1–31 in Mathematical topics of population genetics, edited by K. Kojima. Springer Verlag, Berlin.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

J. F. McDonald

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fontdevila, A. (1993). Genetic instability and rapid speciation: are they coupled?. In: McDonald, J.F. (eds) Transposable Elements and Evolution. Contemporary Issues in Genetics and Evolution, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2028-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2028-9_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4897-2

  • Online ISBN: 978-94-011-2028-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics