Skip to main content

Can Three-Dimensional Ideal Flows Become Singular in a Finite Time?

  • Chapter
Singularities in Fluids, Plasmas and Optics

Part of the book series: NATO ASI Series ((ASIC,volume 404))

  • 231 Accesses

Abstract

The dynamics of three-dimensional ideal flows is investigated by direct numerical simulations of the Euler equations at resolutions up to 2563 for general periodic flows and 8643 for the symmetric Taylor-Green vortex. The spontaneous emergence of flat pancake-like structures that shrink exponentially in time is observed. A simple self- similar model that fits these observations is presented. Focusing instabilities similar to those leading to streamwise vortices in the context of free shear layers (15), are expected to subsequently concentrate the vorticity and produce isolated vortex filaments. A finite time singularity for the Euler equations is not excluded as the result of interactions among these filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Bardos and S. Benachour, Domaine d’analyticité des solutions de l’équation d’Euler dans un ouvert de Rn, Ann. Sc. Norm. Sup. Pisa, serie IV, 4, 647 (1977).

    MathSciNet  MATH  Google Scholar 

  2. A. Pumir and E.D. Siggia, Collapsing solutions of the 3-D Euler equation, Phys. Fluids A 2, 220 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. A. Pumir and E.D. Siggia, Development of singular solutions to the axisymmetric Euler equation, Phys. Fluids A 4, 1472 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R.M. Kerr, Evidence for a singularity of the three-dimensional incompressible Euler equation, Preprint (1991).

    Google Scholar 

  5. J.T. Beale, T. Kato and A. Majda, Remarks on the breakdown of smooth solutions for 3-D Euler equations, Comm. Math. Phys. 94, 61 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. G. Ponce, Remarks on a paper by J.T. Beale, T. Kato and A. Majda, Comm. Math. Phys. 98, 349 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. G.I. Taylor and A. E. Green, Mechanism of the production of small eddies from large one, Proc. Roy. Soc. London A 158, 499 (1937).

    Article  ADS  MATH  Google Scholar 

  8. M. Brachet, D. Meiron, S.A. Orszag, B. Nickel, R. Morf and U. Frisch, Small-scale struc ture of the Taylor-Green vortex, J. Fluid Mech. 130, 411 (1983).

    Article  ADS  MATH  Google Scholar 

  9. M.E. Brachet, Direct simulation of three-dimensional turbulence in the Taylor-Green vortex, Fluid Dyn. Res. 8, 1 (1991).

    Article  ADS  Google Scholar 

  10. A. Vincent and M. Meneguzzi, The spatial structure and statistical properties of homogeneous turbulence, J. Fluid Mech. 225, 1 (1991).

    Article  ADS  MATH  Google Scholar 

  11. S.A. Orszag and G.S. Patterson, Numerical simulation of the three-dimensional homogeneous turbulence, Phys. Rev. Lett. 28, 76 (1972).

    Article  ADS  Google Scholar 

  12. C. Sulem, P.L. Sulem and H. Frisch, Tracing complex singularities with spectral methods, J. Comp. Phys. 50, 138 (1983).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. P. Vieillefosse, Local interaction between vorticity and shear in a perfect incompressible fluid, J. Phys. Paris 43, 837 (1982).

    MathSciNet  Google Scholar 

  14. Z.S. She, E. Jackson and S.A. Orszag, Structure and dynamics of homogeneous turbulence: models and simulations, Proc. R. Soc. London A 434, 101 (1991).

    Article  ADS  MATH  Google Scholar 

  15. E. Dresselhaus and M. Tabor, The kinematics of stretching and alignment of material elements in general flow fields, J. Fluid Mech. 236, 415 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. J.C. Neu, The dynamics of stretched vortices, J. Fluid Mech. 143, 253 (1984).

    Article  ADS  MATH  Google Scholar 

  17. S.J. Lin and G.M. Corcos, The mixing layer: deterministic models of a turbulent flow. Part 3. The effect of plane strain on the dynamics of streamwise vortices, J. Fluid Mech. 141, 139 (1984).

    Article  ADS  MATH  Google Scholar 

  18. J.C. Neu, The dynamics of a columnar vortex in an imposed strain, Phys. Fluids 27, 2397 (1984).

    Article  ADS  MATH  Google Scholar 

  19. A.J. Chorin, The evolution of a turbulent vortex, Comm. Math. Phys. 83, 517 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. E.D. Siggia, Collapse and amplification of a vortex filament, Phys. Fluids 28, 794 (1985).

    Article  ADS  MATH  Google Scholar 

  21. A. Pumir and E.D. Siggia, Vortex dynamics and the existence of solutions to the Navier-Stokes equations, Phys. Fluids 30, 1606 (1987).

    Article  ADS  MATH  Google Scholar 

  22. A. Fukuyu and T. Arai, Singularity formation in three-dimensional inviscid flow, Fluid Dyn. Res. 7, 229 (1991).

    Article  ADS  Google Scholar 

  23. E.D. Siggia, Numerical study of small-scale intermittency in three-dimensional turbulence, J. Fluid Mech. 107, 375 (1981).

    Article  ADS  MATH  Google Scholar 

  24. R.M. Kerr and F. Hussain, Simulation of vortex reconnection, Physica D 37, 474 (1989).

    Article  ADS  Google Scholar 

  25. R.M. Kerr, Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence, J. Fluid Mech. 153, 31 (1985).

    Article  ADS  MATH  Google Scholar 

  26. W.T. Ashurst, A.R. Kerstein, R.M. Kerr and C.H. Gibson, Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence, Phys. Fluids 30, 2343 (1987).

    Article  ADS  Google Scholar 

  27. Z.S. She, E. Jackson and S.A. Orszag, Intermittent vortex structures in homogeneous isotropic turbulence, Nature 344, 226 (1990).

    Article  ADS  Google Scholar 

  28. S. Douady, Y. Couder and M.E. Brachet, Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett. 67, 982 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brachet, M.E., Meneguzzi, M., Vincent, A., Politano, H., Sulem, P.L. (1993). Can Three-Dimensional Ideal Flows Become Singular in a Finite Time?. In: Caflisch, R.E., Papanicolaou, G.C. (eds) Singularities in Fluids, Plasmas and Optics. NATO ASI Series, vol 404. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2022-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2022-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4894-1

  • Online ISBN: 978-94-011-2022-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics