Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 55))

Abstract

Geometric properties of spinors are reviewed in connection with their role in complex and optical geometry. According to Cartan and Chevalley, a Weyl spinor φ ≠0,associated by the Dirac representation γ with a complex, 2m–dimensional vector space W, is called pure if the vector subspace N(φ) consisting of all elements ω of W such that γ(ω)φ = 0 is maximal, i.e. m-dimensional. If W is the complexification of a real space V with a scalar product of signature (2p+ε,2q+ε), where ε =0 or 1 and p+q+ε= m, then the real index of φ, γ = dim\(N(\varphi ) \cap \overline {N(\varphi )}\) in the generic case equals γ. Therefore, the direction of a generic pure spinor defines in V a complex (ε = 0) or an optical (ε = 1) structure. These observations are applied to a smooth, orientable 2m-dimensional spin manifold M with a bundle of directions of generic pure spinors. A section of this bundle - if it exists - defines an almost complex or an almost optical geometry, depending on whether γ = 0 or 1. With such a section one associates a bundle N of maximal, totally null subspaces of the complexified tangent spaces toM. Denoting by Z the module of sections of the bundleN, one considers the integrability conditions[Z,Z] ⊂Z In the pseudo-Euclidean case (γ = 0), the condition is equivalent to the vanishing of the Nijenhuis tensor of the almost complex structure; in the Lorentzian, 4-dimensional case, it is related to the geodetic, shear-free properties of the trajectories of the real line bundle Re\((N \cap \overline N )\)M.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atiyah, M. F., Hitchin, N. J. and Singer, I. M.: 1978, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lond A 362, 425–461.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Benn, I. M. and Tucker, R. W.: 1987, An Introduction to Spinors and Geometry with Applications to Physics (Hager, Bristol).

    Google Scholar 

  • Budinich, P. and Trautman, A.: 1988a, The spinorial chessboard, Trieste Notes in Physics (Springer-Verlag, Berlin).

    Google Scholar 

  • Budinich, P. and Trautman, A.: 1988b, Fock space description of simple spinors, J. Math. Phys 30,2125–2131.

    Article  MathSciNet  ADS  Google Scholar 

  • Cartan, É.: 1913, Les groupes projectifs qui ne laissent invariante aucune multiplicité plane, Bull. Soc. Math. France 41, 53–96.

    MathSciNet  MATH  Google Scholar 

  • Cartan, É.: 1938, Leçons sur la théorie des spineurs, vols 1 and 2, Exposés de Géométrie (Hermann, Paris).

    Google Scholar 

  • Chevalley, C.: 1954, The algebraic theory of Spinors (Columbia U. P., New York).

    MATH  Google Scholar 

  • Ehresmann, C.: 1950, Sur les variétés presque complexes, pp. 412–419 in Proc. of the Intern. Congress of Math., Cambridge, MA, 1950 (Amer. Math. Soc. Publ., Providence, RI, 1952).

    Google Scholar 

  • Givens, J. W.: 1937, Tensor coördinates of linear spaces, Ann. of Math. 38, 355–385.

    Article  MathSciNet  Google Scholar 

  • Hughston, L. P. and Mason, L. J.: 1988, A generalised Kerr-Robinson theorem, Class. Quantum Gras. 5, 275–285.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kähler, E.: 1962, Der innere DifferentialkallcülRend. Matematica 21, 425–523.

    Google Scholar 

  • Kopczyński, W. and Trautman, A.: 1992, Simple spinors and real structures, J. Math. Phys 33, 550–559.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Kramer, D., Stephani, H., MacCallum, M. and Herlt, E.: 1980, Exact Solutions of Einstein’s Field Equations. (VEB Deutscher Verlag der Wissen., Berlin).

    MATH  Google Scholar 

  • Lawson, H. B., Jr. and Michelsohn, M. L.: 1989, Spin Geometry (Princeton U. P., Princeton).

    MATH  Google Scholar 

  • Nurowski, P. and Trautman, A.: 1993, Analogies between complex and optical geometries (in preparation).

    Google Scholar 

  • O’Brian, N. R. and Rawnsley, J. H.: 1985, Twistor spaces, Ann. Global Anal. Geom. 3, 29–58.

    Article  MathSciNet  MATH  Google Scholar 

  • Pais, A.: 1962, On spinors in n dimensions, J. Math. Phys.3, 1135–1139.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Penrose, R.: 1978, The complex geometry of the natural worldpp. 189–194 in Proc. of the Intern. Congress of Math, Helsinki, 1978.

    Google Scholar 

  • Penrose, R.: 1983, Physical space-time and nonrealizable CR-structures, Bull. Amer. Math. Soc. (N. S.) 8, 427–448.

    Article  MathSciNet  MATH  Google Scholar 

  • Penrose, R. and Rindler, W.: 1984 and 1986, Spinors and Space-time, vols 1 and 2 (Cambridge U. P., Cambridge).

    Google Scholar 

  • Plebański, J. F. and Hacyan, S.: 1975, Null geodesic surfaces and the Goldberg-Sachs theorem in complex Riemannian spaces, J. Math. Phys 16, 2403–2407.

    Article  ADS  MATH  Google Scholar 

  • Porteous, I. R..: 1969, Topological Geometry (Van Nostrand Reinhold Co., London).

    MATH  Google Scholar 

  • Robinson, I. and Trautman, A.: 1986, Cauchy-Riemann structures in optical geometry, pp. 317–324 in: Proc. of the Fourth Marcel Grossmann Meeting on General Relativity, R. Rufâni, ed. (Elsevier Science Publ.).

    Google Scholar 

  • Robinson, I. and Trautman, A.: 1988, Optical geometry, pp. 454–497 in New Theories in Physics, Proc. XI Warsaw Symp. Elem. Particle Phys., Kazimierz, 23–27 May 1988, Z. Ajduk et al., eds (World Scientific, Singapore, 1989)

    Google Scholar 

  • Rodrigues, O.: 1840, Des lois géométriques qui régissent les déplacements d’un système solide, Journal de Math. (Liouville) 5, 380.

    Google Scholar 

  • Trautman, A.: 1984, Deformations of the Hodge map and optical geometry, J. Geom. Phys. 1, 85–95.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Trautman, A.: 1985, Optical structures in relativistic theories, in “Élie Cartan et les mathémathiques d’aujourd’hui”, Proc. Cont., Lyon, 25–29 juin 1984, Astérisque, numéro hors série, 401–420.

    Google Scholar 

  • Waerden, B. L. van der: 1929, Spinoranalyse, Nach. Ges. Wiss. Göttingen, math.-phys., 100–115.

    Google Scholar 

  • Waerden, B. L. van der: 1960, Exclusion principle and spin, pp. 199–244 in Theoretical physics in the twentieth century, M. Fiers and W. F. Weisskopf, eds (Interscience Publ., New York).

    Google Scholar 

  • Wells, R. O., Jr.: 1983, The Cauchy-Riemann equations and differential geometry, Proc. Symp. Pure Math. 39, Part I, 423–435.

    Google Scholar 

  • Yano, K. and Kon, M.: 1984, Structures on Manifolds (World Scientific, Singapore).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this paper

Cite this paper

Trautman, A. (1993). Geometric Aspects of Spinors. In: Brackx, F., Delanghe, R., Serras, H. (eds) Clifford Algebras and their Applications in Mathematical Physics. Fundamental Theories of Physics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2006-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2006-7_37

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2347-1

  • Online ISBN: 978-94-011-2006-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics