Skip to main content

Cauchy Transforms and Bi-Axial Monogenic Power Functions

  • Conference paper
Clifford Algebras and their Applications in Mathematical Physics

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 55))

  • 454 Accesses

Abstract

We consider the transform of suitable Clifford valued functions or distributions \(f\left( {{{{\vec{x}}}_{1}},{{{\vec{x}}}_{2}}} \right) \) defined on bi-axially symmetric domains in R p+q with p+q = m. Such functions have the expansion

$$f\left( {{{{\vec{x}}}_{1}},{{{\vec{x}}}_{2}}} \right) = \sum\limits_{{k,l}} {{{f}_{{k,l}}}} \left( {\left| {{{{\vec{x}}}_{1}}} \right|,\left| {{{{\vec{x}}}_{2}}} \right|} \right){{p}_{{k,l}}}\left( {{{{\vec{x}}}_{1}},{{{\vec{x}}}_{2}}} \right), $$

Where \({p_{k,l}}\left( {{{\vec x}_1},{{\vec x}_2}} \right)\) are bi-axial spherical monogenics of degree k in \({\vec x_1}\) and degree l in \({\vec x_2}\). We define generalised Cauchy transforms for the case when the f k,l are independent of \(\left| {{{\vec x}_2}} \right|\):

$$\Lambda_{k,l}^{\left( 1 \right)}\left( f \right)\left( {\vec x} \right) = - \frac{1}{{{\omega_m}}}\int_{{R^P}} {\frac{{\left[ {{{\vec x}_1} + {{\vec x}_2} - \vec u} \right]}}{{{{\left| {{{\vec x}_1} + {{\vec x}_2} - \vec u} \right|}^{m + 2l}}}}} {p_{k,l}}\left( {\vec \eta,{{\vec x}_2}} \right){f_{k,l}}\left( \lambda \right){d^p}\vec u$$
$${\Lambda ^{\left( 2 \right)}}\left( f \right)\left( {\vec x} \right) = - \frac{1}{{{\omega _m}}}\int_{{R^P}} {\frac{{\left[ {{{\vec x}_1} + {{\vec x}_2} - \vec u} \right]}}{{{{\left| {{{\vec x}_1} + {{\vec x}_2} - \vec u} \right|}^{m + 2l}}}}} \vec \eta {P_{k,l}}\left( {\vec \eta,{{\vec x}_2}} \right){f_{k,l}}\left( \lambda \right){d^p}\vec u$$

Where \(\vec u = \lambda \vec \eta,\left| {\vec \eta } \right| = 1\).

The angular integrations are explicitly carried out and conditions for the existence of \(\Lambda _{{k,l\alpha }}^{{\left( j \right)}} \equiv \Lambda _{{k,l}}^{{\left( j \right)}}\left( {{{\lambda }^{\alpha }}} \right) \) are derived. Finally INNER and OUTER bi-axial power functions are defined in analogy to the axial case and are related to the Cauchy transforms \(\Lambda _{k,l,\alpha }^{\left( j \right)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Common, A.K. and Sommen, F.: ‘Special Bi-Axial Monogenic Functions’, University of Kent preprint IMS/A92/9, submitted to Journ.Math.Anal.App. for publication.

    Google Scholar 

  • Hochstadt, H.: 1971, ‘The Functions of Mathematical Physics’ Pure and Applied Math 23, Wiley-Intersciences, New York.

    Google Scholar 

  • Jank, G. and Sommen F.: 1990, ‘Clifford Analysis, Bi-Axial Symmetry and Pseudo-analytic Functions’, Complex Variable 13, pp. 195–212.

    Article  MathSciNet  MATH  Google Scholar 

  • Ryan, J.: 1991, ‘Applications of Clifford Analysis to Axially Symmetric Partial Differential Equations’, Complex Variables: Theory and Applications 16, pp. 137–51.

    MATH  Google Scholar 

  • Sommen, F.: 1984, ‘Plane Elliptic Systems and Monogenic Functions in Symmetric Domains’, Supp.Rend.Circ.Mat.Palermo (2) 6, pp. 259–269.

    MATH  Google Scholar 

  • Sommen, F.: 1988, ‘Special Functions in Clifford Analysis and Axial Symmetry’, Journ.Math.Anal.App 130, pp. 100–133.

    MathSciNet  Google Scholar 

  • Sommen, F.: 1992, Lecture Notes, University of Ghent.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Kluwer Academic Publishers

About this paper

Cite this paper

Common, A.K., Sommen, F. (1993). Cauchy Transforms and Bi-Axial Monogenic Power Functions. In: Brackx, F., Delanghe, R., Serras, H. (eds) Clifford Algebras and their Applications in Mathematical Physics. Fundamental Theories of Physics, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2006-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2006-7_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2347-1

  • Online ISBN: 978-94-011-2006-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics