Advertisement

Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Ascherson on the Banc d’Arguin (Mauritania)

  • J. E. Vermaat
  • J. A. J. Beijer
  • R. Gijlstra
  • M. J. M. Hootsmans
  • C. J. M. Philippart
  • N. W. van den Brink
  • W. van Vierssen
Conference paper
  • 50 Downloads
Part of the Developments in Hydrobiology 86 book series (DIHY, volume 86)

Abstract

Leaf dynamics and standing stocks of intertidal seagrasses were studied in the Baie d’Aouatif (Parc National du Banc d’Arguin, Mauritania) in April and September 1988. Standing stocks of Zostera noltii Hörnern, suggest a unimodal seasonal curve similar to what is found for populations at higher latitudes. Also, leaf growth rates (0.03 cm2 cm-2 day-1 on average) were similar to those found at higher latitudes in these months. Variation in leaf loss over tidal depth, time and different locations in the Baie d’Aouatif was larger and more often significant than variation in leaf growth. In general, Z. noltii beds in the Baie d’Aouatif had comparable leaf growth rates and standing stocks. In both months losses were almost always higher than or equal to growth.

Variation in leaf loss over time was much higher in the plots that were situated high in the intertidal than in lower plots. This is explained by differences in susceptibility to sloughing, which is presumably higher in periods with low tide around noon for shallow depths.

In an experiment using artificial shading nets, in situ leaf growth was affected negatively from 94% shading onwards. This shading was observed to reduce the light intensity reaching the seagrass bed to a level below the reported range of light compensation points for Z. noltii.

Cymodocea nodosa (Ucria) Ascherson on average had higher leaf area and relative growth rates than Z. noltii and much lower loss rates, resulting in a positive net increase in September. Standing stocks were also higher than for Z. noltii. A mixed seagrass bed containing the above two species and Halodule wrightii Ascherson had the highest observed total biomass: 335 g m-2 ash-free dry weight.

Key words

Zostera noltii Cymodocea nodosa growth, seagrass 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Causton, D. R. & J. C. Venus, 1981. The biometry of plant growth. Arnold, London, 307 pp.Google Scholar
  2. Caye, G. & A. Meinesz, 1985. Observations on the vegetative development, flowering and seeding of Cymodocea nodosa (Ucria) Ascherson on the Mediterranean coasts of France. Aquat. Bot. 22: 277–289.CrossRefGoogle Scholar
  3. Drew, E. A., 1978. Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ucria) Aschers, and Posidonia oceanica (L.) Delile in the Mediterranean. J exp. mar. Biol. Ecol. 31: 173–194.CrossRefGoogle Scholar
  4. Duarte, C.M., 1989. Temporal biomass variability and production/biomass relationships of seagrass communities. Mar. Ecol. Progr. Ser. 51: 269–276.CrossRefGoogle Scholar
  5. Hootsmans, M. J. M., J. E. Vermaat & J. A. J. Beijer, 1993. Periphyton density and shading in relation to tidal depth and fiddler crab activity in intertidal seagrass beds of the Banc d’Arguin (Mauritania). Hydrobiologia 258: 73–80.CrossRefGoogle Scholar
  6. Hunt, R., 1978. Plant growth analysis. Studies in Biology No. 96. Arnold, London, 64 pp.Google Scholar
  7. Jacobs, R. P. W. M., 1979. Distribution and aspects of the production and biomass of eelgrass, Zostera marina L., at Roscoff, France. Aquat. Bot. 7: 151–172.CrossRefGoogle Scholar
  8. Jiménez, C., F. X. Niell & P. Algarra, 1987. Photo synthetic adaptation of Zostera noltii Hornern. Aquat. Bot. 29: 217–226.CrossRefGoogle Scholar
  9. Moed, J. R. & G. M. Hallegraef, 1978. Some problems in the estimation of chlorophyll-a and phaeopigments from preand post-acidification spectrophotometric measurements. Int. Revue ges. Hydrobiol. 63: 787–800.CrossRefGoogle Scholar
  10. Norusis, M.J., 1986. SPSS-PC+ manual. SPSS Inc., Chicago, USA, 559 pp.Google Scholar
  11. Pergent, G., C. Pergent & G. Vuignier, 1988. Données préliminaires sur les herbiers de phanerogames marines du Banc d’Arguin (Mauretanie). GIS Posidonie publ., Marseille, France, pp. 1–55.Google Scholar
  12. Steel, R. G. D. & J. H. Torrie, 1980. Principles and procedures of statistics, a biometrical approach. Second edition. Mc Graw Hill Book Company, Singapore, 633 pp.Google Scholar
  13. Van Lent, F., P. H. Nienhuis & J. M. Verschuure, 1991. Production and biomass of the seagrasses Zostera noltii Hornern, and Cymodocea nodosa (Ucria) Aschers, at the Banc d’Arguin (Mauritania, NW Africa): a preliminary approach. Aquat. Bot. 41: 353–367.CrossRefGoogle Scholar
  14. Vermaat, J. E., M. J. M. Hootsmans & P. H. Nienhuis, 1987. Seasonal dynamics and leaf growth of Zostera noltii Hornern., a perennial intertidal seagrass. Aquat. Bot. 28: 287–299.CrossRefGoogle Scholar
  15. Vernon, L. P., 1960. Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Analyt. Chem. 32: 1144–1150.CrossRefGoogle Scholar
  16. Wolff, W. J. & C. J. Smit, 1990. The Banc d’Arguin, Mauritania, as an environment for coastal birds. Ardea 78: 17–38.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  • J. E. Vermaat
    • 1
  • J. A. J. Beijer
    • 1
  • R. Gijlstra
    • 1
  • M. J. M. Hootsmans
    • 1
  • C. J. M. Philippart
    • 1
  • N. W. van den Brink
    • 1
  • W. van Vierssen
    • 1
  1. 1.Dept. of Nature ConservationAgricultural UniversityWageningenThe Netherlands

Personalised recommendations