Skip to main content

The Interaction of Climate and Land Use in Future Terrestrial Carbon Storage and Release

  • Chapter
Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2

Abstract

The processes controlling total carbon (C) storage and release from the terrestrial biosphere are still poorly quantified. We conclude from analysis of paleodata and climate-biome model output that terrestrial C exchanges since the last glacial maximum (LGM) were dominated by slow processes of C sequestration in soils, possibly modified by C starvation and reduced water use efficiency of trees during the LGM. Human intrusion into the C cycle was immeasurably small. These processes produced an averaged C sink in the terrestrial biosphere on the order of 0.05 Pg yr-1 during the past 10,000 years.

In contrast, future C cycling will be dominated by human activities, not only from increasing C release with burning of fossil fuels, and but also from indirect effects which increase C storage in the terrestrial biosphere (CO2 fertilization; management of C by technology and afforestation; synchronous early forest succession from widespread cropland abandonment) and decrease C storage in the biosphere (synchronous forest dieback from climatic stress; warming-induced oxidation of soil C; slowed forest succession; unfinished tree life cycles; delayed immigration of trees; increasing agricultural land use). Comparison of the positive and negative C flux processes involved suggests that if the C sequestration processes are important, they likely will be so during the next few decades, gradually being counteracted by the C release processes.

Based only on tabulating known or predicted C flux effects of these processes, we could not determine if the earth will act as a significant C source from dominance by natural C cycle processes, or as a C sink made possible only by excellent earth stewardship in the next 50 to 100 yrs. Our subsequent analysis concentrated on recent estimates of C release from forest replacement by increased agriculture. Those results suggest that future agriculture may produce an additional 0.6 to 1.2 Pg yr-1 loss during the 50 to 100 years to CO2 doubling if the current ratio of farmed to potentially-farmed land is maintained; or a greater loss, up to a maximum of 1.4 to 2.8 Pg yr-1 if all potential agricultural land is farmed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Apps, M. J., Kurz, W. A., Luxmoore, R., Nilsson, L.-O., Sedjo, R. A., Schmidt, R., Simpson, L. G., and Vinson, T. S.: 1993, This volume.

    Google Scholar 

  • Apps, M. J. and Kurz, W. A.: 1993, This volume.

    Google Scholar 

  • Botkin, D. B. and Simpson, L. G.: 1990, Biogeochemistry 9, 161.

    Google Scholar 

  • Botkin, D. B. and Simpson, L. G.: 1993, This volume.

    Google Scholar 

  • Brown, S., Lugo, A. E., and Iverson, L. R.: 1992, Water, Air, and Soil Poll. 64, 139.

    Article  CAS  Google Scholar 

  • Brown, S.: 1993, This volume.

    Google Scholar 

  • COHMAP Project Members: 1988, Science 241, 1043.

    Article  Google Scholar 

  • Cramer, W. P. and Solomon, A. M.: 1993, Climate Research, in press.

    Google Scholar 

  • Davis, M. B.: 1976, Geosci. Man 13, 13.

    Google Scholar 

  • Davis, M. B.: 1981, Quaternary history and the stability of forest communities, West, D. C., Shugart, H. H. and Botkin, D. B. (eds), Forest Succession: Concepts and Application, Springer-Verlag, pp. 132–154.

    Chapter  Google Scholar 

  • Davis, M. B.: 1983, Ann. Miss. Bot. Gardens 70, 550.

    Article  Google Scholar 

  • Davis, M. B.: 1990, Research questions posed by the paleoecological record of global change, Bradley, R.S. (ed), Global Changes of the Past, OIES, UCAR, Boulder, pp. 385–395.

    Google Scholar 

  • Davis, M. B., Woods, K. D., Webb, S. L. and Futyma, R. P.: 1986, Vegetatio 67, 93

    Article  Google Scholar 

  • Davis, M. B. and Zabinski, C.: 1992. Changes in geographical range resulting from greenhouse warming: Effects on biodiversity in forests, Peters, R. L. and Lovejoy, T. E. (eds), Global Warming and Biological Diversity, Yale Univ. Press, pp. 297–308.

    Google Scholar 

  • Dixon, R. K.: 1993, This volume.

    Google Scholar 

  • Gear, A. and Huntley, B.: 1991, Science 251, 544.

    Article  CAS  Google Scholar 

  • Harden, J. W., Sundquist, E. T., Stallard, R. F., and Mark, R. K.: 1992, Science 258, 1921

    Google Scholar 

  • Gorham, E.: 1991, Ecol. Applications 1, 182.

    Article  Google Scholar 

  • Hansen, J., Russell, G., Rind, D., Stone, P., Lacis, A., Lebedeff, S., Ruedy, R. and Travis, L.: 1983, Monthly Weather Rev. 111, 609.

    Article  Google Scholar 

  • Houghton, R. A.: 1985, Estimating changes in the C content of terrestrial ecosystems from historical data, Trabalka, J.R. and Reichle, D. E. (eds.), The Changing C Cycle: A Global Analysis, Springer-Verlag, pp. 175–193.

    Google Scholar 

  • Hummel, J. R. and Reck, R. A.: 1979, J. Appl. Meteorol. 18, 239.

    Article  Google Scholar 

  • Huntley, B. and Webb, T., III: 1988, Vegetation History, Kluwer.

    Book  Google Scholar 

  • Kates, R. W., Turner, B. L., and Clark, W. C.: 1990, The great transformation., Turner, B. L., Clark, W. C., Kates, R. W., Richards, J. F., Matheews, J. T., and Meyer, W. B. (eds.), The Earth as Transformed by Human Action, Cambridge Univ. Press, pp. 119.

    Google Scholar 

  • Kauppi, P. E. and others: 1993,This volume.

    Google Scholar 

  • Kauppi, P. E., Mielikäinen, K. and Kuusela, K.: 1992, Science 256, 70.

    Article  CAS  Google Scholar 

  • King, G. A., and Neilson, R. P.: 1992, Water, Air and Soil Poll. 64, 365.

    Article  CAS  Google Scholar 

  • Körner, C.: 1993, CO2 fertilization: The great uncertainty in future vegetation development. Solomon, A. M. and Shugart, H. H., (eds), Vegetation Dynamics and Global Change, Chapman and Hall, pp. 53–70.

    Chapter  Google Scholar 

  • Kolchugina, T. P. and Vinson, T. S.: 1993, This volume.

    Google Scholar 

  • Kursten, E.: 1993, This volume.

    Google Scholar 

  • Leemans, R.: 1989, Possible changes in natural vegetation patterns due to a global warming Hackl, A. (ed), Der Treibhauseffekt: das Problem - Mögliche Folgen - Erforderliche Maßnahmen, Akademie für Umwelt und Energie, 105.

    Google Scholar 

  • Leemans, R. and Cramer, W. P.: 1991, The IIASA Climate Database for Mean Monthly Values of Temperature, Precipitation, and Cloudiness on a Terrestrial Grid, WP-9018, International Institute for Applied Systems Analysis.

    Google Scholar 

  • Leemans, R. and Solomon, A. M.: 1993, J. Clim. Res. (in press).

    Google Scholar 

  • Manabe, S. and Wetherald, R. T.: 1987, J. Atmosph. Sci. 44, 1211.

    Article  Google Scholar 

  • Mann, L. K.: 1986, Soil Sci. 142, 279.

    Article  CAS  Google Scholar 

  • Matthews, E.: 1983, J. Clint. App. Meteorol. 22, 474.

    Article  Google Scholar 

  • Mitchell, J. F. B.: 1983, Quart. J. R. Met. Soc. 109, 113.

    CAS  Google Scholar 

  • Neilson, R. P.: 1993, This volume.

    Google Scholar 

  • Olson, J., Watts, J. A. and Allison, L. J.: 1983, Carbon in Live Vegetation of Major World Ecosystems, ORNL-5862, Oak Ridge National Laboratory.

    Google Scholar 

  • Orr, J.: 1993, This volume.

    Google Scholar 

  • Overpeck, J. T., Webb, R. S., and Webb, T. III.: 1992, Geology 20, 1071.

    Article  Google Scholar 

  • Prentice, I.C., Bartlein, P.J., and Webb, T. III. 1991. Ecology 72, 2038.

    Article  Google Scholar 

  • Prentice, I. C., Cramer, W., Harrison, S. P., Leemans, R., Monserud, R. A. and Solomon, A. M.: 1992, J. Biogeogr. 19, 117.

    Article  Google Scholar 

  • Prentice, I. C., and Sykes, M. T.: 1993, Vegetation geography and global carbon storage changes, Woodwell, G.M. (ed),Woods Hole Workshop on Biotic Feedbacks in the Global Climate System, Oxford University Press, In press.

    Google Scholar 

  • Prentice, I. C., Sykes, M. T., Lautenschlager, M., Harrison, S. P., Denissenko, O. and Bartlein, P. J.: 1993, Global Biogeogr. Letters, In press.

    Google Scholar 

  • Prentice, K. C. and Fung, I. Y.: 1990, Nature 346, 48.

    Article  Google Scholar 

  • Raynaud, D., Jouzel, J, Barnola, J. M., Chappellaz, J., Delmas, R. J., and Lorius, C.: 1993, Science 259, 926.

    CAS  Google Scholar 

  • Sampson, R. N.: 1993, This volume.

    Google Scholar 

  • Sampson, R. N., Wright, L. L., Winjum, J. K., Kinsman, J. D., Benneman, J., Kursten, E., and Scurlock, J. M. 0.: 1993, This volume.

    Google Scholar 

  • Scharpenseel, H. W.: 1993, This volume.

    Google Scholar 

  • Schlesinger, M. E. and Zhao, Z.-C.: 1989, J. Clim. 2, 459.

    Article  CAS  Google Scholar 

  • Schlesinger, W. H.: 1977, Ann. Rev. Ecol. Syst. 8, 51.

    Article  CAS  Google Scholar 

  • Schneider, S. H. and Thompson, S. L.: 1981, J. Geophys. Res. 86, 3135.

    Article  Google Scholar 

  • Sedjo, R. A. and Solomon, A. M.: 1989, Climate and forests, Rosenburg, N. J., Easterling, W. E., Crosson, P.R., and Darmstadter, J. (eds.), Greenhouse Warming: Abatement and Adaptation, Resources for the Future, Washington, D.C.pp. 105–119. Simpson, L. and Botkin, D.B.: 1993, This volume.

    Google Scholar 

  • Smith, T. M. and Shugart, H. H.: 1993, Nature 361, 523.

    Article  Google Scholar 

  • Smith, T. M., Shugart, H. H., Bonan, G. B. and Smith, J. B.: 1992, Adv. Ecol. Res. 22, 93.

    Article  Google Scholar 

  • Smith, T. M.: 1993, This volume.

    Google Scholar 

  • Solomon, A. M.: 1984, Amer. Quaternary Assoc. Meeting Abstracts,120.

    Google Scholar 

  • Solomon, A. M.: 1986, Oecologia (Berlin) 68, 567.

    Article  Google Scholar 

  • Solomon, A. M. and Bartlein, P. J.: 1992, Can. J. For. Res. 22, 1727.

    Article  Google Scholar 

  • Solomon, A. M. and Cramer, W. P.: 1993, Biospheric implications of global environmental change, Solomon, A. M. and Shugart, H. H. (eds), Vegetation Dynamics and Global Change, Chapman and Hall, Publishers, pp. 25–52.

    Chapter  Google Scholar 

  • Solomon, A. M. and Leemans, R.: 1990, Climatic change and landscape-ecological response: Issues and analyses, Boer, M. M. and de Groot, R. S. (eds), Landscape Ecological Impact of Climatic Change, IOS Press, pp. 293–317.

    Google Scholar 

  • Solomon, A. M. and Tharp, M. L.: 1985, Simulation experiments with late-Quaternary C storage in mid-latitude forest communities. E. T. Sundquist and W. S. Broecker (eds), The C Cycle and Atmospheric CO 2 :Natural Variations, Archean to Present. American Geophysical Union, pp.. 235–250.

    Chapter  Google Scholar 

  • Solomon, A. M., Tharp, M. L., West, D. C., Taylor, G. E., Webb, J. W. and Trimble, J. L.: 1984, Response of Unmanaged Forests to C Dioxide-Induced Climate Change: Available Information, Initial Tests, and Data Requirements. TR-009,United States Department of Energy.

    Google Scholar 

  • Solomon, A. M., Trabalka, J. R., Reichle, D. E. and Voorhees, L. D.: 1985, The global cycle of C, J. R. Trabalka (ed), Atmospheric C Dioxide and the Global C Cycle.” DOE/ER-0239, United States Department of Energy, pp. 1–13.

    Google Scholar 

  • Solomon, A. M. and West, D. C.: 1985, Potential responses of forests to CO2-induced climate change, White, M. R. (ed), Characterization of information requirements for studies of CO 2 effects: water resources, agriculture, fisheries, forests and human health, DOE/ER-0236, U.S. Department of Energy, pp. 145–169.

    Google Scholar 

  • Tans, P. P., Fung, I. Y. and Takahashi, T.: 1990, Science 247, 1431.

    Article  CAS  Google Scholar 

  • Trexler, M. C.: 1993, This volume.

    Google Scholar 

  • Vloedbeld, M. and Leemans, R.: 1993, This Volume.

    Google Scholar 

  • Webb, T., III: 1986, Vegetatio 67, 119.

    Article  Google Scholar 

  • Webb, T., III: 1987, Vegetatio 69, 177.

    Article  Google Scholar 

  • Whittaker, R. H. and Likens, G. E.:1975. The biosphere and man, Lieth, H. and Whittaker, R. H. (eds.), Primary Productivity of the Biosphere, Springer-Verlag, pp. 305–328

    Chapter  Google Scholar 

  • Wigley, T. M. L. and Raper, S. C. B.: 1992, Nature 357, 293.

    Article  CAS  Google Scholar 

  • Winjum, J. K., Dixon, R. K., and Schroeder, P. E.: 1993, This volume.

    Google Scholar 

  • Wright, L. L and Hughes, E. E.: 1993, This volume.

    Google Scholar 

  • Zinke, P. J., Stangenberger, A. G., Post, W. M., Emanuel, W. R. and Olson, J. S.: 1984, Worldwide Organic Soil C and Nitrogen Data, ORNL TM-8857, Oak Ridge National Laboratory.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Solomon, A.M., Prentice, I.C., Leemans, R., Cramer, W.P. (1993). The Interaction of Climate and Land Use in Future Terrestrial Carbon Storage and Release. In: Wisniewski, J., Sampson, R.N. (eds) Terrestrial Biospheric Carbon Fluxes Quantification of Sinks and Sources of CO2 . Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1982-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1982-5_40

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4875-0

  • Online ISBN: 978-94-011-1982-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics