Skip to main content

Optical Tunneling through an Adjustable Liquid Metal Gap

  • Chapter
Near Field Optics

Part of the book series: NATO ASI Series ((NSSE,volume 242))

Abstract

First results were obtained with a scanning near-field optical microscope (SNOM) whose gap is filled with a droplet of a liquid metal alloy. The transmission of light through a metal layer may be considered a photon tunneling process. As to be expected on theoretical grounds, we find that the transmission vs. gap width varies on a scale of 5 to 10 mm, which is much more rapid than in any other NFO scheme. A correspondingly high lateral resolution may be anticipated. Successful operation of the device requires good wetting between the liquid metal, probe and sample.

On leave from Faculté des Sciences, Dépt. de Physique, Rue de Bruxelles 61, B-5000 Namur

On leave from Physik-Institut, Universität Basel, Klingelbergstr. 82, CH-4056 Basel

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohl, D.W., Denk, W., and Dürig, U. (1985) Optical stethoscopy: imaging with λ/20, in “Micron and Submicron Integrated Circuit Metrology” (ed. K. M. Monahan) Proc. SPIE 565, 56–61., see also D.W. Pohl: “Scanning Near-Field Optical Microscopy (SNOM),” Advances in Optical and Electron Microscopy, ed. by C.J.R. Sheppard and T. Mulvey, Vol. 12, (Academic Press, London, UK)

    Google Scholar 

  2. Betzig, E., Isaacson, M., Lewis, A. (1987) Collection mode nearfleld scanning optical microscopy, Appl. Phys. Lett. 51, 2088–2090.

    Article  ADS  Google Scholar 

  3. Betzig, E., Trautman, J.K., Wolfe, R., Gyorgy, E.M., Finn, P.L., Kryder, M.H. and Chang, C.-H. (1992) Near-field magneto-optics and high density data storage, Appl. Phys. Lett. (to be publ. July 13, 1992.)

    Google Scholar 

  4. Courjon, D., Sarayeddine, K., and Spajer, M. (1989) Scanning tunneling optical microscopy, Opt Commun. 71, 23–28.

    Article  ADS  Google Scholar 

  5. Reddik, R.C., Warmack, R.J., and Ferrell, T.L. (1989) New form of scanning optical microscopy, Phys. Rev. B 39, 767–770.

    Article  ADS  Google Scholar 

  6. de Fornel, F., Goudonnet, J.P., Salomon, L., and Lesniewska, E. (1989) An evanescent field optical microscope, Proc. SPIE 1139, 77–84.

    Article  ADS  Google Scholar 

  7. Hansen, M. and Anderko, K. (1958) Constitution of Binary Alloys, Vol. 2, (McGraw Hill, New York)

    Google Scholar 

  8. Elliot, R.P. (1965) Constitution of Binary Alloys, First Supplement, 531–532 (McGraw Hill, New York)

    Google Scholar 

  9. Kofman, R., Cheyssac, P. and Richard, J. (1977) Optical properties of Ga monocrystal in the 0.3 to 5 eV Range, Phys. Rev. B 16, 5216–5223.

    Article  ADS  Google Scholar 

  10. Mathewson, A.G. and Myers, H.P. (1971) Absolute values of the optical constants of some pure metals, Phys. Scripta 4, 291–292.

    Article  ADS  Google Scholar 

  11. Koyama, R.Y., Smith, N.V. and Spicer, W.E. (1973) Optical properties of indium, Phys. Rev. B 8, 2426–2432.

    Article  ADS  Google Scholar 

  12. Inagaki, T., Arakawa, E.T. and Williams, M.W. (1981) Optical properties of liquid mercury, Phys. Rev. B 23, 5246–5262.

    Article  ADS  Google Scholar 

  13. See, for instance, Bom, M. and Wolf, E. (1959) Principles of Optics, Chapts. 13.4, Eq. (24) (Pergamon Press, London)

    Google Scholar 

  14. See, for instance, Feibelman, P.J. (1982) Surface electromagnetic fields, Progress in Surf. Sci. 12, 287–408.

    Article  ADS  Google Scholar 

  15. Dereux, A. and Pohl, D.W. (1992) The 90° prism as a model SNOM probe: Near-field, photon tunneling, and far-field properties, these proceedings

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pohl, D.W., Courjon, D., Bainier, C., Dereux, A., Heinzelmann, H. (1993). Optical Tunneling through an Adjustable Liquid Metal Gap. In: Pohl, D.W., Courjon, D. (eds) Near Field Optics. NATO ASI Series, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1978-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1978-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4873-6

  • Online ISBN: 978-94-011-1978-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics