Skip to main content

Calculation of Resonantly Enhanced Light Emission from a Scanning Tunneling Microscope

  • Chapter
Near Field Optics

Part of the book series: NATO ASI Series ((NSSE,volume 242))

Abstract

We have calculated the intensity of emitted light from a scanning tunneling microscope (STM) equipped with an Ir or W tip, probing the surface of a noble metal film. In the calculation we model the tip by a sphere. To describe the electromagnetic properties of the materials we have used experimentally measured dielectric functions. In agreement with recent experimental results we find that the light intensity is considerably enhanced compared with the yield in ordinary inverse photoemission experiments. Our theory also, in reasonable agreement with the experiments, predicts characteristic peaks in the light intensity at certain photon energies (≈2.5 eV for Ag, ≈2.1 eV for Au and Cu). The enhanced spontaneous emission is the result of the coupling between the tunneling electrons and an interface plasmon mode localized to the region between the tip and the metal film. This plasmon mode is radiative due to the tip-induced loss of translational invariance along the sample surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gimzewski, X. K., Sass, J. K., Schlittler, R. R. and Schott, J. (1989) ‘Enhanced photon emission in scanning tunneling microscopy’, Europhys. Lett. 8, 435.

    Article  ADS  Google Scholar 

  2. Coombs, J. H., Gimzewski, J. K., Reihl, B., Sass, J. K., Schlittler, R. R. and Schott, J. (1988) J. Microsc. 152, 325.

    Article  Google Scholar 

  3. Berndt, R., Gimzewski, J. K. and Johansson, P. (1991) ‘Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces’, Phys. Rev. Lett. 67, 3796.

    Article  ADS  Google Scholar 

  4. Sivel, V., Coratger, R., Ajustron, F. and Beauvillain, J. (1992) ‘Photon emission stimulated by scanning tunneling microscopy in air’, Phys. Rev. B 45, 8634.

    Article  ADS  Google Scholar 

  5. Lambe, J. and McCarthy, S. L. (1976) ‘Light emission from inelastic electron tunneling’, Phys. Rev. Lett. 37, 923.

    Article  ADS  Google Scholar 

  6. Adams, A. and Hansma, P. K. (1981) ‘Light emission from small metal particles and thin metal films excited by tunneling electrons’, Phys. Rev. B 23, 3597.

    Article  ADS  Google Scholar 

  7. Bloemer, M. J., Mantovani, J. G., Goudonnet, J. P., James, D. R., Warmack, R. J. and Ferell, T. L. (1987) ‘Observation of driven surface-plasmon modes in metal particulates above tunnel junctions’, Phys. Rev. B 35, 5947.

    Article  ADS  Google Scholar 

  8. Kirtley, J. R., Theis, T. N. and Tsang, J. C. (1981) ‘Light emission from tunnel junctions on gratings’, Phys. Rev. B 24, 5650; Kirtley, J. R., Theis, T. N., Tsang, J. C. and DiMaria, D. J. (1983) ‘Hot-electron picture of üght emission from tunnel junctions’, ibid. 27, 4601.

    Article  ADS  Google Scholar 

  9. Sparks, P. D., Sjodin, T., Reed, B. W. and Stege, J. (1992) ‘Light emission from the slow mode of tunnel junctions on short period diffraction gratings’, Phys. Rev. Lett. 68, 2668.

    Article  ADS  Google Scholar 

  10. Davis, L. C. (1977) ‘Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions’, Phys. Rev. B 16, 2482.

    Article  ADS  Google Scholar 

  11. Laks, B. and Mills, D. L. (1979) ‘Photon emission from slightly roughened tunnel junctions’, Phys. Rev. B 20, 4962; (1980) ‘Roughness and the mean-free path of surface polaritons in tunnel-junction structures’, ibid. 21, 5175.

    Article  ADS  Google Scholar 

  12. Arya, K. and Zeyher, R. (1983) ‘Light emission from tunnel junctions: The role of multiple scattering of surface polaritons’, Phys. Rev. B 28, 4080.

    Article  ADS  Google Scholar 

  13. Rendell, R. W., Scalapino, D. J. and Mühlschlegel, B. (1978) ‘Role of local plasmon modes in light emission from small-particle tunnel junctions’, Phys. Rev. Lett. 41, 1746; Rendell, R. W. and Scalapino, D. J. (1981)’ surface plasmons confined by microstructures on tunnel junctions’, Phys. Rev. B 24, 3276.

    Article  ADS  Google Scholar 

  14. Johansson, P., Monreal, R. and Apell, P. (1990) ‘Theory for light emission from a scanning tunneling microscope’, Phys. Rev. B 42, 9210.

    Article  ADS  Google Scholar 

  15. Johansson, P. and Monreal, R. (1991) ‘Theory for photon emission from a scanning tunneling microscope’, Z. Phys. B 84, 269.

    Article  ADS  Google Scholar 

  16. Persson, B. N. J. and Baratoff, A. (1992) ‘Theory of photon emission in electron tunneling to metallic particles’, Phys. Rev. Lett. 68, 3224; (1990) Bull. Am. Phys. Soc. 35, 634.

    Article  ADS  Google Scholar 

  17. Berndt, R., Baratoff, A. and Gimzewski, J. K., (1990) ‘Scanning tunneling optical microscopy of silver nanostructures’, in Behm, R. J., Garcia, N. and Rohrer, H. (eds.), Scanning Tunneling Microscopy and Related Methods, Kluwer Academic Publishers, Dordrecht, pp. 269–280.

    Google Scholar 

  18. Landau, L. D. and Lifshitz, E. M. (1960) Electrodynamics of Continuous Media, Pergamon, Oxford, pp. 288–290.

    MATH  Google Scholar 

  19. Jackson, J. D. (1975) Classical Electrodynamics, Wiley, New York.

    MATH  Google Scholar 

  20. Johnson, P. B. and Christy, R. W. (1972) ‘Optical constants of the noble metals’, Phys. Rev. B 6, 4370; Weaver, J. H., Krafka, C., Lynch, D. W. and Koch, E. E. (1981) Physics Data No. 18-1, Fachinformationszentrum, Karlsruhe.

    Article  ADS  Google Scholar 

  21. Takemori, T., Inoue, M. and Ohtaka, K. (1987) ‘Optical response of a sphere coupled to a metal substrate’, J. Phys. Soc. Jpn. 56, 1587.

    Article  ADS  Google Scholar 

  22. Morse, P. M. and Feschbach, H. (1953) Methods of Theoretical Physics, McGraw-Hill, New York, Vol. II, pp. 1298–1301.

    MATH  Google Scholar 

  23. Kirtley, J., Scalapino, D. J. and Hansma, P. K. (1976) ‘Theory of vibrational mode intensities in inelastic electron tunneling spectroscopy’, Phys. Rev. B 14, 3177.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Johansson, P., Monreal, R., Apell, P. (1993). Calculation of Resonantly Enhanced Light Emission from a Scanning Tunneling Microscope. In: Pohl, D.W., Courjon, D. (eds) Near Field Optics. NATO ASI Series, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1978-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1978-8_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4873-6

  • Online ISBN: 978-94-011-1978-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics