Skip to main content

Scanning Tunneling Optical Microscopy (STOM): Theoretical Study of Polarization Effects with two Models of Tip

  • Chapter

Part of the book series: NATO ASI Series ((NSSE,volume 242))

Abstract

Two kinds of probe are actually used in scanning near-field optical microscopy: dielectric tip and small aperture probe. The purpose of this paper is to compare theoretically the two different probes by calculating and comparing the images of a same sample. We choose to describe a Scanning Tunneling Optical Microscope (S.T.O.M.) where the sample is illuminated by total internal reflection. The dielectric tip is modeled as a small scattering dipolar center. The intensity detected by the other probe is calculated by using the diffraction theory of Bethe and Bouwkamp. It is shown that the two probes do not detect the same things: the dielectric tip picks up the square modulus of the electric near-field. The other probe is sensible both to the electric and magnetic fields. The models are used to calculate images of a two-dimensional object (a letter) of dimension smaller than the wavelength. The images are quite different and are very sensitive to polarization of the incident field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pohl, D. W. Denk, W. Düng, U. (1985) ‘Optical stethoscopy: imaging with λ/20’, in K.M. Monahan (ed.), Micron and Submicron Integrated circuit metrology’, Proc. SPIE565, pp. 56-61.

    Google Scholar 

  2. Betzig, E. Lewis, A. Harootunian, A. Isaacson, M. Kratschmer, E. (1986) ‘Near-field scanning optical microscopy’, Biophys. J. 49, 269–279.

    Article  Google Scholar 

  3. Reddick, R. C. Warmack, R. J. Ferrel, T. L. (1989) ‘New form of scanning optical microscopy’, Phys. Rev. B 39, 767–770.

    Article  ADS  Google Scholar 

  4. Courjon, D. Sarayedine, K. Spajer, M. (1989) ‘Scanning tunneling optical microscopy’, Opt. Comm. 71, 23–28.

    Article  ADS  Google Scholar 

  5. de Fornel, F. Goudonnet, J. P. Salomon, L. Lesniewska, E. (1989) ‘An evanescent field optical microscope’, Proc SPIE 1139, pp. 77–84.

    Article  ADS  Google Scholar 

  6. Betzig, E. Trautman, J. K. Harris, T. D. Weiner, J. S. Kostelar, R. L (1991) ‘Breaking the diffraction barrier: optical microscopy on a nanometric scale’, Science 251, 1468–1470.

    Article  ADS  Google Scholar 

  7. Courjon, D. Bainier, C. Spajer, M. ‘Imaging of submicron index variations by scanning optical tunneling microscopy’, submitted to J. Vac. Sci. Technol.

    Google Scholar 

  8. Van Labeke, D. Barchiesi, D. (1992) ‘Scanning-tunneling optical microscopy: a theoretical macroscopic approach’, J. Opt. Soc. Am. A 9, 732–739.

    Article  ADS  Google Scholar 

  9. Barchiesi, D. Van Labeke, D. ‘Application of Mie scattering of evanescent waves to scanning optical tunneling microscopy theory’, to be published.

    Google Scholar 

  10. Salomon, L. de Fornel, F. Goudonnet, J. P. (1991) ‘Sample-tip coupling efficiencies of the photon-scanning tunneling microscope’, J. Opt. Soc. Am. A 8, 2009–2015.

    Article  ADS  Google Scholar 

  11. Cites, J. Sanghadasa, M. F. M. Sung C. C. Reddick, R. C. Warmack, R. J. Ferrell, T.L. (1992) ‘Analysis of photon scanning tunneling microscope images’, J. Appl. Phys. 71, 7–10.

    Article  ADS  Google Scholar 

  12. Labani, B. Girard, C. Courjon, D. Van Labeke, D. (1990) ‘Optical interaction between a dielectric tip and a nanometric lattice: implications for near-field optical microscopy’, J. Opt. Soc. Am B 7, 936–942.

    Article  ADS  Google Scholar 

  13. Betzig, E. Isaacson, M. Lewis, A. (1987) ‘Collection mode near-field scanning optical microscopy’, Appl. Phys. Lett. 51, 2088–2090.

    Article  ADS  Google Scholar 

  14. Bethe, H.A. (1944) ‘Theory of diffraction by small holes,’ Phys. Rev. 66, 163–182.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Bouwkamp, C. J. (1954), ‘Diffraction theory’, Reports in Physics, 27, 35–100.

    Article  MathSciNet  ADS  Google Scholar 

  16. Betzig, E. Harootunian, A. Lewis, A. Isaacson, M. (1986) ‘Near-field diffraction by a slit: implications for supperresolution microscopy’, Appl. Opt. 25, 1890–1900.

    Article  ADS  Google Scholar 

  17. Roberts, A. (1991) ‘Small hole coupling of radiation into a near-field probe’, J. Appl. Phys. 70, 4045–4049.

    Article  ADS  Google Scholar 

  18. Jackson, J. D. (1975) Classical ElectrodynamicsWiley, New York, chap. 9.

    MATH  Google Scholar 

  19. Jalocha, A. Leblanc, S. Spajer, M. (1990) ‘Etudes des capteurs utilisés en microscopie tunnel optique’, Conference ‘Opto 90’, E.S.I. publications, Paris.

    Google Scholar 

  20. Van Labeke, D. Barchiesi, D. ‘Theoretical problems in scanning near-field optical microscopy’, published in this revue., and authors papers in this revue.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Barchiesi, D., van Labeke, D. (1993). Scanning Tunneling Optical Microscopy (STOM): Theoretical Study of Polarization Effects with two Models of Tip. In: Pohl, D.W., Courjon, D. (eds) Near Field Optics. NATO ASI Series, vol 242. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1978-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1978-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4873-6

  • Online ISBN: 978-94-011-1978-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics