Skip to main content

NMR Techniques for the Study of Crystalline and Amorphous Solids

  • Chapter
Defects and Disorder in Crystalline and Amorphous Solids

Part of the book series: NATO ASI Series ((ASIC,volume 418))

Abstract

Many solids do not exhibit the long-range order necessary for diffraction studies; in these cases the use of spectroscopic methods is suitable for their structural characterization. In this chapter, the applicacation of solid state NMR spectroscopy is reviewed in relation to the study of geometrical and substitutional disorder in crystalline and amorphous materials. After an introduction to the background theory, we focus on the interpretation of NMR spectra recorded using low and high resolution techniques. In particular, advantages derived from the use of monocrystalline samples in determination of quadrupolar, paramagnetic and dipolar interactions are analyzed. Finally, high-resolution methods (MAS technique, cross-polarization, decoupling…) are briefly rewieved. These methods are used to cancel dipolar interactions, so that, in many cases chemical shift values of NMR lines can be obtained for structural characterization of solids.

In the first group of examples presented, the local structure of amorphous and glassy materials is analyzed. It is shown that the coordination number and polymerization degree depend on the composition and relative distribution of ions. In the second group, the possibilities of NMR for determining tetrahedral framework distortions, site occupation and cation distribution in crystalline solids are discussed. The use of highresolution methods has permitted the study of second cation neighbours of a given atom and from that the determination of some characteristics of cation distribution in aluminosilicates. In particular, the multinuclear NMR study of 2:1 phyllosilicates has shown that, contrary to what might be expected, random distribution of cations does not apply in these minerals and that there are some restrictions on the distribution patterns. In the tetrahedral sheet, the homogeneous dispersion of Si and Al includes the Loewenstein’s rule as a restraint and in the octahedral sheet some clustering of Mg and Fe was detected around F and OH anions. Both types of distribution produce longrange disordered patterns in these minerals. Finally, we show that 29Si MAS-NMR spectroscopy can be used to follow the symmetry changes that accompanies longrange AI,Si ordering in tetrahedral network of certain aluminosilicates (feldspars and cordierite).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrew, E.R. (1971) ‘The narrowing of NMR spectra of solids by high speed specimen rotation and the resolution of chemical shift and spin multiplet structure for solids’, Progress in NMR spectroscopy 8, 1–39.

    Article  Google Scholar 

  • Bailey, S.W. (1975) ‘Cation ordering and pseudosymmetry in layer silicates’, Amer. Mineral. 60, 175–187.

    Google Scholar 

  • Barron, P.F. and Frost, R.L. (1985) ‘Solid state 29Si NMR examination of the 2:1 ribbon magnesium silicates, sepiolite and palygorskite’, Amer. Mineral. 70,758–766.

    Google Scholar 

  • Bray, P.J. (1978) Borate glasses: Structure, properties, applications, L.D. Pye, V.D. Frechette and N.J. Kreidl (Eds.), Plenum. New York.

    Google Scholar 

  • Bunker, B.C., Tallant, D.R., Kirkpatrick, R.J. and Turner, G.L. (1990) ‘Multinuclear nuclear nuclear magnetic resonance and Raman investigation of sodium boro-silicate glass structures’, Physics Chem. of Glasses 31, 30–41.

    Google Scholar 

  • Donnay, G., Donnay, J.D.H. and Takeda, H. (1964) ‘Trioctahedral one-layer micas II. Prediction of the structure from composition and cell dimensions’, Acta Cryst 17, 1374–1381.

    Article  Google Scholar 

  • Elliot, S.R. (1984) Physics of amorphous materials, Longman, New York.

    Google Scholar 

  • Engelhardt, G. and Michel, D. (1987) High resolution solid state NMR of silicates and zeolites. John Wiley & Sons, New York.

    Google Scholar 

  • Fukushima, E. and Roeder, S.B.W. (1981) Experimental pulse NMR. A nuts and bolts approach. Addison & Wisley, Massachusetts.

    Google Scholar 

  • Fyfe, C.A., Gobbi, G.C. and Putnis, A. (1986) ‘Elucidation, mechanism and kinet-kinetics of the Si,AI ordering process in synthetic Mg-cordierite by 29Si MAS-NMR spectroscopy’, J. Amer. Chem. Soc. 108, 3218–3223.

    Article  Google Scholar 

  • Ganapathy, S., Schramm, S. and Ojdfield, E. (1982) ‘Variable-angle sample spin-spinning high resolution NMR of solids’, J. Chem. Phys. 77, 4360–4365.

    Article  ADS  Google Scholar 

  • Gilson, J.P., Edwards, G.C, Peters, A.W., Rajagopalan, K., Wormsbecher, R.F., Roberie, T.G. and Shatlock, H.P. (1987) ‘Pentacoordinated aluminium in zeolites and aluminosilicates’, J. Chem. Soc. Chem. Commun., 91–92.

    Google Scholar 

  • Haeberlen, U. (1976) High-resolution NMR in solids: Selective averaging. Academic Press, New York.

    Google Scholar 

  • Hawthorne, F.C. (1983) ‘Quantitative characterization of site occupancies in minerals’, Amer. Mineral. 68, 287–306.

    Google Scholar 

  • Herrero, C.P., Sanz, J. and Serratosa, J.M. (1985) ‘Tetrahedral cation ordering in layer silicates by 29Si NMR spectroscopy’, Solid State Communications 53, 151–154.

    Article  ADS  Google Scholar 

  • Herrero, C.P., Griegorkievitz, M., Sanz, J. and Serratosa, J.M. (1987) ‘29Si MAS-NMR spectroscopy of micatype silicates: Observed and predicted distribution of tetrahedral Al-Si’, Phys. Chem. Minerals 15, 84–90.

    Article  ADS  Google Scholar 

  • Herrero, C.P., Sanz, J. and Serratosa, J.M. (1989) ‘The dispersion of charge deficits in the tetrahedral sheet of phyllosilicates. Analysis from 29Si NMR spectra’, J. Phys. Chem. 93, 4311–4315.

    Article  Google Scholar 

  • Herzfeld, J. and Berger P.E. (1980). ‘Sideband intensities in NMR spectra of samples spinning at the magic angle, J. Chem. Phys. 73, 6021–6030.

    Article  ADS  Google Scholar 

  • Hewitt, D.A. and Wones, D.R. (1975) ‘Physical properties of some synthetic Fe-Mg-AI trioctahedral biotites’, Amer. Mineral. 60, 854–862.

    Google Scholar 

  • Kirkpatrick, R.J. (1988) ‘MAS-NMR spectroscopy of minerals and glasses’,in F.C. Hawthorne (Ed.) Reviews in Mineralogy 18, Mineral. Soc. America, pp 341–403.

    Google Scholar 

  • Komarneni, S., Roy, R., Fyfe, C.A., Kennedy, G. and Strbl, H. (1986) ‘Solid state 27AI and 29Si magic angle spinning NMR of aluminosilicate gels’, J. Am. Ceram. Soc. 69, C42–C44.

    Google Scholar 

  • Lippmaa, E., Magi, M., Samoson, A., Engelhardt, G., Grimmer, A.R. (1980) ‘Structural studies of silicates by solid state high resolution 29Si NMR’ J. Amer. Chem. Soc. 102, 4889–4893.

    Article  Google Scholar 

  • Lipsicas, M., Raythatha, R.H., Pinnavaia, T.J., Jhonson, I.D., Giese Jr R.F., Constanzo, P.M. and Robert, J.L. (1984) ‘Silicon and aluminium site distribution in 2:1 layered silicate clays’, Nature 309, 604–609.

    Article  ADS  Google Scholar 

  • Maciel, G.E. and Sindorf, D.W. (1980) ‘Silicon-29 nuclear magnetic resonance study of the surface of silica gel by cross polarization and magic angle spinning spinning’, J. Amer. Chem. Soc. 102, 7606–7607.

    Article  Google Scholar 

  • Manceau, A., Bonnin, D., Stone, W.E.E. and Sanz, J. (1990) ‘Distribution of Fe in octahedral sheet of trioctahedral micas by polarized Exafs. Comparison with NMR results’, Phys. Chem. Minerals 17, 363–370.

    Article  ADS  Google Scholar 

  • Mehring, M. (1983) High resolution NMR spectroscopy of solids, Springer Verlag, Berlin.

    Book  Google Scholar 

  • Müller, D., Gessner, W., Behrens, H.J. and Scheler, G. (1981) ‘Determination of the aluminium coordination in aluminium-oxygen compounds by solid state state high resolution 27AI NMR’, Chem. Phys. Letters 79, 59–62.

    Article  ADS  Google Scholar 

  • Phillips, B.L., Kirkpatrick, R.J. and Hovis, G.L. (1988) ‘27AI, 29Si and 23Na MAS-NMR study of an AI,Si ordered alkali feldspars solid solution series’, Phys. Chem. Minerals 16, 262–275.

    Article  ADS  Google Scholar 

  • Pines, A., Gibby, M.G. and Waugh, J.S. (1973) ‘Proton enhanced NMR of diluted ions in solids’, J. Chem. Phys. 59, 569–590.

    Article  ADS  Google Scholar 

  • Putnis, A., Fyfe, C.A. and Gobbi, G.C. (1985) ‘AI,Si ordering in cordierite using magic angle spinning NMR. I. 29Si spectra of synthetic cordierites’, Phys. Phys. Chem. Minerals 12, 211–216.

    Article  ADS  Google Scholar 

  • Putnis, A., Salje, E., Redfern, S.A.T., Fyfe, C.A. and Strobl, H. (1987) ‘Structural states of Mg-cordierite. I. Order parameters from synchrotron x-ray and NMR data’, Phys. Chem. Minerals 14, 446–454.

    Article  ADS  Google Scholar 

  • Rojo, J.M., Sanz, J., Ruiz-Hitzky, E. and Serratosa, J.M. (1986) ‘29Si MAS-NMR spectra of lamellar silicic acid H-magadiite and its trimethysilyl derivative’, Z. Anorg. allg. Chem. 540/541, 227–233.

    Article  Google Scholar 

  • Rojo, J.M., Ruiz-Hitzky, E. and Sanz, J. (1988) ‘Proton-sodium exchange in magamagadiite. Spectroscopic study (NMR,IR) of the evolution of interlayer OH groups’, Inorganic Chemistry 27, 2785–2790.

    Article  Google Scholar 

  • Rosemberg, P.E. and Foit, F.F. (1977) ‘Fe2+-F- avoidance in silicates’, Geochimica et Cosmochimica Acta 41, 345–346.

    Article  ADS  Google Scholar 

  • Samoson, A., Lippmaa, E. and Pines, A. (1988) ‘High resolution solid state NMR. Averaging of second order effects by means of a double rotor’, Molecular Physics, 65, 1013–1018.

    Article  ADS  Google Scholar 

  • Sanz, J. and Stone, W.E.E. (1977) ‘NMR study of micas. I. Distribution of Fe2+ ions on the octahedral sites’, J. Chem. Phys. 67, 3739–3743.

    Article  ADS  Google Scholar 

  • Sanz, J. and Stone, W.E.E. (1979) ‘NMR study of micas. II. Distribution of Fe2+, F and OH in the octahedral sheet of phlogopites’, Amer. Mineral. 64, 119–126.

    Google Scholar 

  • Sanz, J. and Stone, W.E.E. (1983a) ‘NMR study of minerals. III. The distribution of Mg2+ and Fe2+ around the OH groups in micas’, J. Phys. C: Solid State Phys. 16, 1271–1281.

    Article  ADS  Google Scholar 

  • Sanz, J. and Stone, W.E.E. (1983b) ‘NMR applied to Minerals. IV. Local order order in the octahedral sheet of micas: Fe-F avoidance’, Clay Minerals 18,187–192.

    Article  Google Scholar 

  • Sanz, J. and Serratosa, J.M. (1984) ‘29Si and 27AI high-resolution MAS- NMR spectra of phyllosilicates’, J. Amer. Chem. Soc. 106, 4790–4793.

    Article  Google Scholar 

  • Sanz, J. (1990) ‘Distribution of ions in phyllosilicates by NMR spectroscopy,’ in A. Mottana and F. Burragato (eds.), Absorption Spectroscopy in Minerals erals, Elsevier, Amsterdam, pp 103–144.

    Google Scholar 

  • Sanz, J., Sobrados, I., Cavalieri, A.L., Pena, P., Aza, S. and Moya, J.S. (1991) ‘Structural changes induced on mullite precursors by thermal treatment. A 27AI MAS-NMR investigation’, J. of Amer. Ceram. Soc. 74, 2398–2403.

    Article  Google Scholar 

  • Sanz, J. and Robert, J.L. (1992) ‘Influence of structural factors in 29Si chemical shifts in phyllosilicates 2:1’, Phys. Chem. Minerals 19, 39–45.

    Article  ADS  Google Scholar 

  • Sherriff, B.L. and Hartman, J.S. (1985) ‘Solid state high-resolution 29Si NMR of feldespars: Al-Si disorder and the effects of paramagnetic centers’, Can. Mineral 23, 205–212.

    Google Scholar 

  • Slichter, C.P. (1963) Principles of magnetic resonance. Harper & Row, New York.

    Google Scholar 

  • Smith, J.V. (1974) Feldespars Minerals, Vol 1, Springer Verlag, New York.

    Book  Google Scholar 

  • Stebbins, J. (1988) ‘NMR spectroscopy and dynamic processes in mineralogy and geochemistry’, in F.C. Hawthorne (Ed.), Rewievs in Mineralogy 18, Mineral. Soc. America, pp 405–429.

    Google Scholar 

  • Thomas, J.M., Klinowski, J., Wright, P.A. and Roy, R. (1983a) ‘Probing the environment of Al atoms in non crystalline solids: AI2O3.SiO2 gels, soda glass and mullite precursors’, Angew. Chem. Int. Ed. English 22, 614–616.

    Article  Google Scholar 

  • Thomas, J.M., Klinowski, J., Ramdas, S., Hunter, B.K. and Tennakoom, D.T.B. (1983b) ‘The evaluation of non-equivalent tetrahedral sites from 29Si NMR chemical shifts in zeolites and related aluminosilicates’, Phys Letters 102,158–162.

    Google Scholar 

  • Villegas, M.A., Sanz, J. and Femandez-Navarro, J.M. (1990) ‘Characterization by l1Bf 23Na and 29Si MAS-NMR of silicate and borosilicate glasses pre-prepared by the sol-gel procedure’, J. non-Crystalline Solids 121, 171–76.

    Article  ADS  Google Scholar 

  • Waugh, J.S., Maricq, M.H. and Cantor, R. (1978) ‘Rotational spin echoes in solids’, J. Magnetic Resonance 29, 183–190.

    Google Scholar 

  • Weiss, C.A., Altaner, S.P. and Kirkpatrick, R.J. (1987) ‘High resolution 29Si NMR spectroscopy of 2:1 layer silicates: correlations among chemical shifts, structural distortions and chemical variations’, Amer. Mineral 72, 935–942.

    Google Scholar 

  • Wong, J. and Angell, C.A. (1976) Glass: Structure by Spectroscopy, Dekker, New York.

    Google Scholar 

  • Zhong, J. and Bray, P.J. (1989) ‘Change in boron coordination in alkali borate glasses and mixed alkali effects as elucidated by NMR’, J. non-Crystalline Solids 111, 67–76.

    Article  ADS  Google Scholar 

  • Zhong, J., Wu, X., Liu, M.L. and Bray, P.D. (1988) ‘Structural modeling of lithium borosilicate glasses via NMR studies’, J. non Crystalline Solids 107,81–87.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanz, J. (1994). NMR Techniques for the Study of Crystalline and Amorphous Solids. In: Catlow, C.R.A. (eds) Defects and Disorder in Crystalline and Amorphous Solids. NATO ASI Series, vol 418. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1942-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1942-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4859-0

  • Online ISBN: 978-94-011-1942-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics