Skip to main content

Part of the book series: NATO ASI Series ((ASIC,volume 418))

Abstract

Solid state ionics is presently largely concerned with non crystalline materials such as salt-polymer complexes and inorganic glassy electrolytes. For salt-polymer complexes, ionic conductivity is observed above T g , the glass transition temperature, and appears to follow a V.T.F. behaviour expressed σ = A’exp (-B’/R(T-T 0 )). For glassy electrolytes, below their T g temperature, ionic conductivity obeys an Arrhenius law expressed as σ = A exp (-B/RT). In the two cases, charge carrier formation may be described by partial dissociation of ionic pairs equivalent to Frenkel defect formation. Defect migration in a glass is caused by an indirect interstitial process which is an activated process. For organic polymers above their T g , defect migration occurs through a cooperative mechanism involving the neighbouring atoms. This process is a purely en-tropic mechanism resulting in a local concentration of the “free volume” evenly distributed throughout the supercooled liquid. This mechanism vanishes at the same temperature T 0 at which the configurational entropy of the supercooled liquid disappears. For glasses, isothermal large variations in the ionic conductivity with composition are the result of consistent variations of the chemical potential of dissociating species which may be explained by classical solution thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. SOUQUET, J.L., KONE, A. and LEVY, M. (1990) “Theory and Applications of Amorphous Solids for Electrochemical Cells” in J.R. Akridge and M. Balkanski (eds) “Solid State Microbatteries” NATO ASI Series B: Physics Vol. 217 pp 301-322

    Google Scholar 

  2. WATNABE, M, ITOH, M, SANUI, K., OGATA, N. (1987)“Carrier transport and generation processes in polymer electrolytes based on poly(ethylene oxide) networks”, Macromol. 20, pp 569-573

    Article  ADS  Google Scholar 

  3. ARMAND, M.B., CHABAGNO, J.M., DUCLOT, M.J. (1979) “Poly-ethers as solid electrolytes” in Vashishta, Mundy, Shenoy (eds) “Fast ion transport in solids” North Holland, Amsterdam pp 131-136

    Google Scholar 

  4. PATHMANATHAN, K., MLCAK, R. and JOHARI, G.P., (1989) “Electrical conduction by fast ion transport in molten (AgI)x(AgPO3)1-x glasses”, Phys. Chem. Glasses, 30 pp 180-185

    Google Scholar 

  5. KAWAMURA, J., SHIMOJI, M. (1986) “Ionic conductivity and glass transition in superionic conducting glasses” J. Non Crystalline Solids 88, pp 281-294

    Article  ADS  Google Scholar 

  6. KILOS, A., LE NEST, J.F., CHERADAME, H., GANDINI, A. (1982) “Ionic conductivity of polyether-polyurethane networks containing NaBxØa free volume anal-sis” Makromol. Chem. 183 pp 2835-2845

    Article  Google Scholar 

  7. SAKKA, S., MACKENZIE (1971) J. Non Cryst. Solids 25 p 145

    Article  Google Scholar 

  8. CAILOT, E., DUCLOT, M.J., SOUQUET, J.L. (1990) The ideal vitreous transition temperature: an old concept for new researches in solid state ionics ISSILett. l,pp 14-16

    Google Scholar 

  9. VOGEL, H. (1921) “Das Temperaturabhangigkeitsgesetz der Viskositat von Flükeiten” Phys. Z. 22 pp 645-46

    Google Scholar 

  10. TAMMANN, G. and HESSE, W., (1926): Dependence of viscosity on the temperature of su-ercooled liquids. Anorg. Allgem. Chem. 156, pp 245-257

    Article  Google Scholar 

  11. FULCHER G.S. (1925): Analysis of recent measurements of the viscosity of glasses - J. Am. Ceram. Soc. 8, pp 339-356

    Article  Google Scholar 

  12. DOOLITTLE, A.K. (1951): Studies in Newtonian flow. The dependence of the viscosity on free-space. Appl. Phys. 22, pp 1471-1480

    Google Scholar 

  13. COHEN, M.H. and TURNBULL, D. (1959): Molecular transport in liquids and glasses - J. Chem. Phys. 31, pp 1164-1169

    Article  ADS  Google Scholar 

  14. ANGELL, C.A. and MOYNIHAN, C.T. (1969): “Molten salts” G. Mamantov ed. New York

    Google Scholar 

  15. KAUZMANN, W. (1948): The nature of the glassy state and the behaviour of liquid at low temperatures. Chem. Rev. 43, pp 219-256

    Article  Google Scholar 

  16. ADAM, G. and GIBBS, J.H. (1965): On the temperature dependence of cooperative relax-tion properties in glass forming liquids J. Chem. Phys. 43, pp 139-146

    Article  ADS  Google Scholar 

  17. ANGELL, C.A. (1985): “Strong and fragile liquids” in Relaxation in complex systems. Natl. Bur. Stand (US) K.L. Ngai and G.B. Wright ed. Washington, pp 3-11

    Google Scholar 

  18. STEIN, D.L.. and PALMER, R.G. (1988): Nature of the glass transition Phys. Rev. B. 38, pp 12035-12038

    Article  ADS  Google Scholar 

  19. ZALLEN, R. (1983): The physics of amorphous solids’ John Wiley and Sons

    Book  Google Scholar 

  20. CLEMENT, V., RAVAINE, D., DEPORTES, C. and BILLAT, R. (1988) “Measurement of Hall mobilities in AgP03-AgI glasses” Solid State Ionics 28-30 pp 1572-1577

    Article  Google Scholar 

  21. HAVEN, Y., and VERKERK, B. (1965) “Diffusion and electrical conductivity of sodium ions in sodium silicate glasses” - Phys. Chem. Glasses 6, pp 38-45

    Google Scholar 

  22. TERAI, R., and HAYAMI, R., (1975) “Ionic diffusion in glasses” - J. Non Cryst. Solids 18 pp 217-264

    Article  ADS  Google Scholar 

  23. LIM, C, and DAY, D.E., “Sodium diffusion in glass: III Sodium metaphosphate glass” J. Amer. Ceram. Soc. 61 pp 99-102

    Google Scholar 

  24. KAHNT, H., KAPS, Ch. and OFFERMANN, J. (1988) “A new method of simultaneous measurement of tracer diffusion coefficient and mobility of alkali ions in glasses” Solid State Ionics, pp 215-220

    Google Scholar 

  25. TONGE, J..S., and SHRIVER, D.F. (1989) “Polymer electrolytes” in Polymers for electronic applications - Lai J.H. Ed. CRC Press pp 157-210

    Google Scholar 

  26. SOUQUET, J.L., and PERERA, W.G., (1990) Thermodynamics applied to ionic transport in glases - Solid State Ionics 40/41 pp.595-604

    Google Scholar 

  27. Fuoss, J., (1958) J. Am. Chem. Soc. 80,5059

    Article  Google Scholar 

  28. RAVAINE, D., and SOUQUET, J.L., (1977): A thermodynamic approach to ionic conductivity in oxide glasses. Part 1: Correlation of the ionic conductivity with the chemical potential of alkali oxide in oxide glasses Phys. Chem. Glasses, 18 pp. 27-31

    Google Scholar 

  29. REGGIANI, J.C., MALUGANI, J.P., and BERNARD, J,(1978) J. Chem. Phys. 75 p.849

    Google Scholar 

  30. CORDARO, J.F., and TOMOZAWA, M, (1980) The possibility of partial dissociation of sodium in high purity Ge02 glasses investigated by elec-rical measurements Phys. Chem. Glasses 21 pp.74-77

    Google Scholar 

  31. BLYTHE, A.R., (1980) in “Electrical properties of polymers” Cambridge University Press. Cambridge

    Google Scholar 

  32. RAVAINE, D., and SOUQUET, J.L., (1978): A thermodynamic approach to ionic conduc-ivity in oxide glasses. Part 2: A statistical model of oxide conductive glasses Phys. Chem. Glasses, 19 pp.115-120

    Google Scholar 

  33. PRADEL, A., HENN, F., SOUQUET, J.L., and RIBES, M. (1989) Use of a thermodynamic model to interpret Li+ ionic conduction in oxide and sulphide binary Glasses Phil. Mag. B, 60 pp. 741-751

    Article  Google Scholar 

  34. FINCHAM, C.I.B. and RICHARDSON, F.D., (1954) Proc. R. Soc. A. 223,40

    Article  ADS  Google Scholar 

  35. KONE, A., and SOUQUET, J.L., (1986) Thermodynamic approach to ionic conductivity enhancement by dissolving halide salts in inorganic glasses Solid State Ionics 18/19 pp.454-460

    Google Scholar 

  36. KONE, A., REGGIANI, J.C., and SOUQUET, J.L.,(1989) Mixing enthalpy of glasses in the 3B2O3xNa2O (1-x) Li2 O system. Proceedings of the tenth Riso International Symposium pp. 435-440 Riso National Laboratory, Roskilde Denmark

    Google Scholar 

  37. TERAI, R., and SUGITA, A., (1978) Measurement of the heat of solution of mixed alkali borate glasses Q. Rep. Govt. Ind. Res. Inst. 20, pp. 35 3-56

    Google Scholar 

  38. TAKAHASHI, K., and YOSHIO, T., (1977) Heats of mixing in mixed alkali silicate glasses Zairyo 26 pp.785-790

    Google Scholar 

  39. SOUQUET, J.L., (1988): Glasses as active materials in high-energy density cells - Solid State Ionics 28-30 pp. 693-703

    Google Scholar 

  40. JANZ, G.J., (1967): “Molten salt handbook” Academic Press New York

    Google Scholar 

  41. HERVIG, R.L., and NAVROTSKY, A;, (1985) Thermochemistry of sodium borosilicate glasses J. Am. Ceram. Soc, 68 pp.314-319

    Article  Google Scholar 

  42. MARTINS RODRIGUES, A.C., and DUCLOT, M.J., (1988) Lithium conducting glasses: the Li2O-B2O3-TeO2 system Solid State Ionics 28-30 pp.729-731

    Google Scholar 

  43. ZHANG, Z., KENNEDY, J.H., THOMPSON, J., ANDERSON, S., LATHOP, D.A., and ECKERT, H., (1989) Competitive network modification in non-oxide chalcogenide glasses. Structural and motional properties of glasses in the system Li2S-P2S5-B2S3 studied by multinuclear NMR techniques Appl. Phys. A 49 pp.41-54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Souquet, J.L. (1994). Ionic Transport in Glassy and Polymer Electrolytes. In: Catlow, C.R.A. (eds) Defects and Disorder in Crystalline and Amorphous Solids. NATO ASI Series, vol 418. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1942-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1942-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4859-0

  • Online ISBN: 978-94-011-1942-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics