Skip to main content

Reducing Einstein’s Equations to an Unconstrained Hamiltonian System on the Cotangent Bundle of Teichmüller Space

  • Chapter
Physics on Manifolds

Part of the book series: Mathematical Physics Studies ((MPST,volume 15))

Abstract

A program for reducing Einstein’s vacuum equations to an unconstrained dynamical system where the variables are the true degrees of freedom of the gravitational field is presented. The reduced phase space on which this dynamics occurs is the cotangent bundle T*Tof

$$ \mathcal{T} \equiv \frac{{\mathcal{M}/\mathcal{P}}}{{{{\mathcal{D}}_{0}}}} $$

the D o-restricted conformal superspace of a compact connected orientable 3-manifold M, which we also refer to as the Teichmüller space of conformal structures on M. From results regarding linearization stability of spacetimes, we argue that the program of reduction should be successful for spacetimes that admit constant mean curvature continuously non-symmetric (or deg(M) = 0) non-F6 compact spacelike Cauchy hypersurfaces, inasmuch as the space of solutions to Einstein’s equations is a manifold in a neighborhood of such spacetimes. Modulo the Poincaré conjecture and a conjecture regarding finite free actions on S3, the topological types of all such spacelike Cauchy hypersurfaces M are identified.

Restricting to the case of continuously non-symmetric Yamabe type —1 manifolds M, T can be represented as

$$ \mathcal{T} \approx {{\mathcal{M}}_{{ - 1}}}/{{\mathcal{D}}_{0}} $$

and the full Einstein dynamics can be reduced to an implicitly defined time-dependent Hamiltonian system on the cotangent bundle T*T. The parameter of evolution for this system is the parameter of a monotonically increasing constant mean curvature slicing by spacelike Cauchy hypersurfaces in a neighborhood of the given one, and the Hamiltonian is the volume functional of these hypersurfaces.

Some possible approaches to the more general case of continuously non-symmetric Yamabe type +1 manifolds are proposed. It is speculated that if conformal methods are not successful in treating this case, then, since linearization stability arguments imply that a reduction does exist (modulo discrete isometry groups of the spacetime), there must be another method of reduction that does work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arms, J, Marsden, J, and Moncrief, V (1982), The structure of the space of solutions of Einstein’s equations. II. Many Killing vector fields, Ann. Phys. 144, 81–106.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Arnowitt, R, Deser, S, and Misner, C (1962), The dynamics of general relativity, in Gravitation: an introduction to current research, ed. by L Witten, John Wiley and Sons, Inc., New York.

    Google Scholar 

  3. Aubin, T (1970), Métrique riemanniennes et courbure, J. Diff. Geom. 4, 383–424.

    MathSciNet  MATH  Google Scholar 

  4. Aubin, T (1982), Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  5. Bochner, S (1946), Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52, 776–797.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bröcker, T, and Jänich, (1982), Introduction to Differential Topology, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  7. Budic, R, Isenberg, J, Lindblom, L, and Yasskin, P (1978), On the determinations of Cauchy surfaces from intrinsic properties, Commun. Math. Phys. 61, 87–101.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Choquet-Bruhat, Y, Fischer, A, and Marsden, J (1979), Maximal hypersurfaces and positivity of mass, in Proceedings of the International School of Physics “Enrico Fermi”, Course LXVII, Isolated Gravitating Systems in General Relativity, ed. J Ehlers, North Holland Publishing Company, Amsterdam.

    Google Scholar 

  9. Choquet-Bruhat, Y, and York, J (1980), The Cauchy Problem, in General Relativity and Gravitation: Volume 1, ed. A Held, Plenum Press, New York.

    Google Scholar 

  10. Earle, C, and Eells, J (1969), A fibre bundle description of Teichmüller theory, J. Diff. Geom., 3, 19–43.

    MathSciNet  MATH  Google Scholar 

  11. Ebin, D (1970), The space of Riemannian metrics, Proc. Symp. Pure Math., Amer. Math. Soc. 15, 11–40.

    MathSciNet  Google Scholar 

  12. Edmonds, A (1985), Transformation groups and low-dimensional manifolds, in Group Actions on Manifolds, Contemporary Mathematics, Volume 36, ed. R Schultz, 339–366.

    Chapter  Google Scholar 

  13. Ellis, G (1971), Topology and cosmology, Gen. Rel. and Gravitation 2, 7–21.

    Article  ADS  MATH  Google Scholar 

  14. Fischer, A (1970), The theory of superspace, in Relativity, eds. M Carmel, S Fickler, and L Witten, Plenum Press, New York.

    Google Scholar 

  15. Fischer, A, and Marsden, J (1972), The Einstein equations of evolution - a geometric approach, J. Math. Phys. 28, 1–38.

    MathSciNet  ADS  MATH  Google Scholar 

  16. Fischer, A, and Marsden, J (1975a), Deformations of the scalar curvature, Duke Mathematical Journal 42, 519–547.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fischer, A, and Marsden, J (1975b), Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math., Amer. Math. Soc. 27, 219–263.

    Google Scholar 

  18. Fischer, A, and Marsden, J (1977), The manifold of conformally equivalent metrics, Canadian Journal of Mathematics, 1, 193–209.

    Article  MathSciNet  Google Scholar 

  19. Fischer, A, and Marsden, J (1979a), The initial value problem and the dynamical formulation of general relativity, in General Relativity, an Einstein Centenary Volume, eds. S Hawking and W Israel, Cambridge University Press, Cambridge, England.

    Google Scholar 

  20. Fischer, A, and Marsden, J (1979b), Topics in the dynamics of general relativity, in Proceedings of the International School of Physics “Enrico Fermi”, Course LXVII, Isolated Gravitating Systems in General Relativity, ed. J Ehlers, North Holland Publishing Company, Amsterdam.

    Google Scholar 

  21. Fischer, A, Marsden, J, and Moncrief, V, (1980), The structure of the space of solutions of Einstein’s equations L One Killing field, Ann. Inst. Henri Poincaré 33, 147–194.

    MathSciNet  MATH  Google Scholar 

  22. Fischer, A, and Tromba, A (1984a), On a purely “Riemannian” proof of the structure and dimension of the unramified moduli space of a compact Riemann surface, Mathematische Annalen 267, 311–345.

    Article  MathSciNet  MATH  Google Scholar 

  23. Fischer, A, and Tromba, A (1984b), Almost complex principle fiber bundles and the complex structure on Teichmüller space, J. für die reine und angewandte Mathematik 352, 151–160.

    MathSciNet  MATH  Google Scholar 

  24. Fischer, A, and Tromba, A (1984c), On the Weil-Petersson metric on Teichmüller space, Trans. Amer. Math. Soc. 284, 319–335.

    MathSciNet  MATH  Google Scholar 

  25. Fischer, A, and Tromba, A (1987), A new proof that Teichmüller space is a cell,Trans. Amer. Math. Soc. 303, 257–262.

    MathSciNet  MATH  Google Scholar 

  26. Fischer, A, and Wolf, J A (1974), The Calabi construction for compact Ricci flat Riemannian manifolds, Bull. Amer. Math. Soc. 80, 92–97.

    Article  MathSciNet  MATH  Google Scholar 

  27. Fischer, A, and Wolf, J A (1975), The structure of compact Ricci flat Riemannian manifolds, J. Diff. Geom. 10, 277–288.

    MathSciNet  MATH  Google Scholar 

  28. Frankel, T (1966), On a theorem of Hurwitz and Bochner, J. Math. and Mechanics, 15, 373–377.

    MathSciNet  MATH  Google Scholar 

  29. Friedman, J, and Witt, D (1986), Homotopy is not isotopy for homeomorphisms of 3-manifolds,Topology 25, 35–44.

    Article  MathSciNet  MATH  Google Scholar 

  30. Gromov, M, and Lawson, Jr., H B (1980a), Spin and scalar curvature in the presence of a fundamental group. I, Annals of Mathematics, 111, 209–230.

    Article  MathSciNet  MATH  Google Scholar 

  31. Gromov, M, and Lawson, Jr., H B (1980b), The classification of simply connected manifolds of positive scalar curvature, Annals of Mathematics, 111, 423–434.

    Article  MathSciNet  MATH  Google Scholar 

  32. Gromov, M, and Lawson, Jr., H B (1983), Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Institut des Hautes Études Scientifiques, Publications Mathématiques, Number 58, 83–196.

    Article  MathSciNet  MATH  Google Scholar 

  33. Hawking, S, and Ellis, G (1973), The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, England.

    Book  MATH  Google Scholar 

  34. Hsiang, W (1967a), The natural metric on SO(n)/SO(n - 1) is the most symmetric metric, Bull. Amer. Math. Soc. 73, 55–58.

    Article  MathSciNet  MATH  Google Scholar 

  35. Hsiang, W (1967b), On the bounds on the dimensions of the isometry groups of all possible riemannian metrics on an exotic sphere, Ann. of Math. 85, 351–358.

    Article  MathSciNet  MATH  Google Scholar 

  36. Hsiang, W (1971), On the degree of symmetry and the structure of highly symmetric manifolds, Tamkang Journal of Mathematics, Tamkang College of Arts and Sciences, Taipei, 73, 1–22.

    Google Scholar 

  37. Hu, S-T (1959), Homotopy Theory, Academic Press, New York.

    MATH  Google Scholar 

  38. Kazdan, J, and Warner, F (1975a), Scalar curvature and conformal deformation of Riemannian structure, J. Diff. Geom. 10, 113–134.

    MathSciNet  MATH  Google Scholar 

  39. Kazdan, J, and Warner, F (1975b), Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvatures, Annals of Mathematics, (2) 101, 317–331.

    Article  MathSciNet  MATH  Google Scholar 

  40. Kazdan, J (1985), Prescribing the curvature of a Riemannian manifold, Conference Board of the Mathematical Sciences, Regional Conference Series in Mathematics, Number 57, Amer. Math. Soc., Providence, Rhode Island.

    Google Scholar 

  41. Kneser, H (1929), Geschlossen Flächen in dreidimensionalen Mannigfaltigkeiten, J ber. Deutsch. Math.-Verein 38, 248–260.

    MATH  Google Scholar 

  42. Kobayashi, S, and Nomizu, K (1963), Foundations of Differential Geometry, vol 1, Interscience, John Wiley and Sons, New York.

    MATH  Google Scholar 

  43. Lee, J, and Parker, T (1987), The Yamabe problem, Bull. Amer. Math. Soc. 17, 37–91.

    Article  MathSciNet  MATH  Google Scholar 

  44. Lelong-Ferrand, J (1969), Transformations conformes et quasiconformes des variétés riemanniennes; application à la démonstration d’une conjecture de A. Lichnerowicz, C. R. Acad. Sci. Paris 269, 583–586.

    MathSciNet  MATH  Google Scholar 

  45. Lelong-Ferrand, J (1971), Transformations conformes et quasi-conformes des variétés riemanniennes compacts (démonstration de la conjecture de A. Lichnerowicz), Acad. Roy. Belg. Cl. Sci. Mem. Coll. 8°(2) 39, no.5.

    MathSciNet  Google Scholar 

  46. Milnor, J (1961), A unique decomposition theorem for 3-manifolds, American Journal of Mathematics, 1–7.

    Google Scholar 

  47. Moncrief, V (1975a), Spacetime symmetries and linearization stability of the Einstein equations. I, J. Math. Phys. 16, 493–498.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Moncrief, V (1975b), Decompositions of gravitational perturbations, J. Math. Phys. 16, 1556–1560.

    Article  MathSciNet  ADS  Google Scholar 

  49. Moncrief, V (1976), Space-time symmetries and linearization stability of the Einstein equations. II, J. Math. Phys. 17, 1893–1902.

    Article  MathSciNet  ADS  Google Scholar 

  50. Moncrief, V (1989), Reduction of the Einstein equations in 2 + 1 dimensions to a Hamiltonian system over Teichmuller space, J. Math. Phys. 30 (12), 2907–2914.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  51. Moncrief, V (1990), How solvable is (2 +1)-dimensional Einstein gravity?, J. Math. Phys. 31 (12), 2978–2982.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Obata, M (1971), The conjectures on conformal transformations of Riemannian manifolds, J. Diff. Geom. 6, 247–258.

    MathSciNet  MATH  Google Scholar 

  53. Omori, H (1970), On the group of diffeomorphisms of a compact manifold, Proc. Symp. Pure Math., Amer. Math. Soc. 15, 167–183.

    MathSciNet  ADS  Google Scholar 

  54. Orlik, P, and Raymond, F (1968), Actions of SO(2) on 3-manifolds, in Proceedings of the Conference on Transformation Groups, New Orleans, 1967 Springer-Verlag, New York.

    Google Scholar 

  55. Raymond, F (1968), Classification of the action of the circle on 3-manifolds, Trans. Amer. Math. Soc., 131, 51–78.

    MathSciNet  MATH  Google Scholar 

  56. Schoen, R, and Yau, S T (1979a), Existence of incompressible minimal surfaces and the topology of three dimensional manifolds with non-negative scalar curvature, Annals of Mathematics, 110, 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  57. Schoen, R, and Yau, S T (1979b), The structure of manifolds with positive scalar curvature, Manuscripta Math., 28, 159–183.

    Article  MathSciNet  MATH  Google Scholar 

  58. Spanier, E (1966), Algebraic Topology, McGraw-Hill Book Company, New York.

    MATH  Google Scholar 

  59. Thurston, W (unpublished notes), The geometry and topology of 3-manifolds, preprint, Princeton University, Princeton, New Jersey.

    Google Scholar 

  60. Tromba, A (1992), Teichmüller Theory in Riemannian Geometry, Birkhäuser Verlag, Basel.

    Book  MATH  Google Scholar 

  61. Witt, D (1986), Symmetry groups of state vectors in quantum gravity, J. Math. Phys. 27 (2),573–592.

    Article  MathSciNet  ADS  Google Scholar 

  62. Wolf, J A (1972), Spaces of Constant Curvature, second edition, Publish or Perish Press, Berkeley, California.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fischer, A.E., Moncrief, V. (1994). Reducing Einstein’s Equations to an Unconstrained Hamiltonian System on the Cotangent Bundle of Teichmüller Space. In: Flato, M., Kerner, R., Lichnerowicz, A. (eds) Physics on Manifolds. Mathematical Physics Studies, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1938-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1938-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4857-6

  • Online ISBN: 978-94-011-1938-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics