Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 248))

Abstract

The optical properties of porous Si films produced by electrochemical dissolution of Si are reviewed. From measurements of the optical absorption spectra of a number of samples, an inverse relationship between the optical gap energy and the average nanoparticle size is obtained demonstrating for the first time the quantum confinement of electron-hole pairs in porous Si. Two different sources of photoluminescence in anodized Si have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Esaki, Highlights in Condensed Matter Physics and Future Prospects (Plenum, New York, 1991).

    Google Scholar 

  2. S.S. Iyer, R.T. Collins, and L.T. Canham, Light Emission from Silicon (MRS, Pittsburgh, 1992).

    Google Scholar 

  3. P.M. Fauchet, C.C. Tsai, L.T. Canham, I. Shimizu, and Y. Aoyagi, Microcrystalline Semiconductors: Materials Science & Devices (MRS, Pittsburgh, 1993).

    Google Scholar 

  4. A. Uhlir, Bell Syst. Tech. J. 35, 333 (1956); see also D.R. Turner, J. Electrochem. Soc. 105, 402 (1958).

    Google Scholar 

  5. T. Unagami and M. Seki, J. Electro. Chem. Soc. 125, 1339 (1978).

    Article  Google Scholar 

  6. M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, and A.G. Cullis, J. Cryst. Growth 73, 622 (1985).

    Article  ADS  Google Scholar 

  7. See, for example, G. Bomchil, A. Halimaoui, and R. Herino, Appl. Surf. Sci. 41/42, 604 (1989)

    Article  Google Scholar 

  8. M.I.J. Beale, N.G. Chew, M.J. Uren, A.G. Cullis, and J.D. Benjamin, Appl. Phys. Lett. 46, 86 (1985).

    Article  ADS  Google Scholar 

  9. K. Barla, R. Herino, G. Bomchil, J.C. Pfister, and A. Freund, J. Cryst. Growth 69, 726 (1984).

    Google Scholar 

  10. Y. Watanabe, Y. Arita, T. Yokoyama, and Y. Igarashi, J. Electrochem. Soc. 122, 1351 (1975).

    Article  Google Scholar 

  11. K. Imai, Sol. State Electron. 24, 159 (1981).

    Article  ADS  Google Scholar 

  12. C. Pickering, M.I.J. Beale, D.J. Robbins, P.J. Pearson, and R. Greef, J. Phys. C 17, 6535 (1984).

    Article  ADS  Google Scholar 

  13. L.T. Canham, Phys. World 5, No. 3, 41 (1992).

    Google Scholar 

  14. L.T. Canham. Appl. Phys. Lett. 57, 1046 (1990).

    Article  ADS  Google Scholar 

  15. See the news item in Electronics Times No. 590, 1 (11 April 1991).

    Google Scholar 

  16. A.G. Cullis and L.T. Canham, Nature 353, 335 (1991).

    Article  ADS  Google Scholar 

  17. V. Lehmann and U. Gösele, Appl. Phys. Lett. 58, 856 (1991).

    Article  ADS  Google Scholar 

  18. A. Bsiesy, J.C. Vial, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestein, A. Wasiela, A. Halimaoui, and G. Bomchil, Surf. Sci. 254, 195 (1991).

    Article  ADS  Google Scholar 

  19. N. Koshida and H. Koyama, Jpn. J. Appl. Phys. 30, L1221 (1991).

    Article  ADS  Google Scholar 

  20. S. Gardelis, J.S. Rimmer, P. Dawson, B. Hamilton, R.A. Kubiak, T.E. Whall, and E.H.C. Parker, Appl. Phys. Lett. 59, 2118 (1991).

    Article  ADS  Google Scholar 

  21. A. Halimaoui, C. Ouães, G. Bomchil, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, and F. Muller, Appl. Phys. Lett. 59, 304 (1991); but see also A. Gee, J. Electrochem. Soc. 107, 787 (1960) for what may have been the earliest observation of electroluminescence in p-Si.

    Article  ADS  Google Scholar 

  22. N. Koshida and H. Koyama, Appl. Phys. Lett. 60, 347 (1992).

    Article  ADS  Google Scholar 

  23. K.J. Nash, L.T. Canham, and A.G. Cullis, Europhys. News 23, No. 10, 183 (1992).

    Google Scholar 

  24. S.M. Prokes, O.J. Glembocki, V.M. Burmudez, R. Kaplan, L.E. Friedersdorf, and P.C. Searson, Phys. Rev. B 45, 13788 (1992).

    Article  ADS  Google Scholar 

  25. C. Tsai, K.H. Li, D.S. Kinosky, R.Z. Qian, T.C. Hsu, J.T. Irby, S.K. Banerjee, B.K. Hance, and J.M. White, Appl. Phys. Lett. 60, 1700 (1992).

    Article  ADS  Google Scholar 

  26. S.M. Prokes, J. Appl. Phys. 73, 407 (1993).

    Article  ADS  Google Scholar 

  27. Y. Kato, T. Ito, and A. Hiraki, Appl. Surf. Sci. 41/42, 614 (1989) and references there

    Article  ADS  Google Scholar 

  28. M.S. Brandt, H.D. Fuchs, M. Stutzmann, J. Weber, and M. Cardona, Solid State Commun. 81, 307 (1992); P. Deak, M. Rosenbauer, M. Stutzmann, J. Weber, and M.S. Brandt, Phys. Rev. Lett. 69, 2531 (1992); M. Stutzmann, in these proceedings.

    Article  ADS  Google Scholar 

  29. Y.H. Xie, W.L. Wilson, F.M. Ross, J.A. Mucha, E.A. Fitzgerald, J.M. Macaulay, and T.D. Harris, J. Appl. Phys. 71, 2403 (1992).

    Article  ADS  Google Scholar 

  30. V. Petrova-Koch, T. Muschik, A. Kux, B.K. Meyer, F. Koch, and V. Lehmann, Appl. Phys. Lett. 61, 943 (1992).

    Article  ADS  Google Scholar 

  31. S. Miyazaki, K. Shiba, K. Sakamoto, and M. Hirose, Optoelectronics 7, 95 (1992).

    Google Scholar 

  32. L.T. Canham, M.R. Houlton, W.Y. Leong, C. Pickering, and J.M. Keen, J. Appl. Phys. 70, 422 (1991).

    Article  ADS  Google Scholar 

  33. S. Shih, C. Tsai, K.-H. Li, K.H. Jung, J.C. Campbell, and D.L. Kwong, Appl. Phys. Lett. 60, 633 (1992).

    Article  ADS  Google Scholar 

  34. A. Nakajima, T. Itakura, S. Watanabe, and N. Nakayama, Appl. Phys. Lett. 61, 46 (1992).

    Article  ADS  Google Scholar 

  35. K.H. Jung, S. Shih, T.Y. Hsieh, D.L. Kwong, and T.L. Lin, Appl. Phys. Lett. 59, 3264 (1991).

    Article  ADS  Google Scholar 

  36. C. Tsai, K.-H. Li, J. Sarathy, S. Shih, J.C. Campbell, B.K. Hance, and J.M. White, Appl. Phys. Lett. 59, 2814 (1991).

    Article  ADS  Google Scholar 

  37. M.A. Tischler, R.T. Collins, J.H. Stasthis, and J.C. Tsang, Appl. Phys. Lett. 60, 639 (1992).

    Article  ADS  Google Scholar 

  38. M. Yamada and K. Kondo, Jpn. J. Appl. Phys. 31, L993 (1992).

    Article  ADS  Google Scholar 

  39. S. Miyazaki, K. Shiba, K. Sakamoto, and M. Hirose, in Ref. [3], p. 269.

    Google Scholar 

  40. DJ. Lockwood, G.C. Aers, L.B. Allard, B. Bryskiewicz, S. Charbonneau, D.C. Houghton, J.P. McCaffrey, and A. Wang, Can. J. Phys. 70, 1184 (1992).

    Article  ADS  Google Scholar 

  41. G.D. Saunders and Y.-C. Chang, Phys. Rev. B 45, 9202 (1992).

    Article  ADS  Google Scholar 

  42. J.R. Proot, C. Delerue, and G. Allen, Appl. Phys. Lett. 61, 1948 (1992).

    Article  ADS  Google Scholar 

  43. M. Yamamoto, R. Hayashi, K. Tsunetomo, K. Ohno, and Y. Osaka, Jpn. J. Appl. Phys. 30, 136 (1991).

    Article  ADS  Google Scholar 

  44. M.S. Hybertsen, in Ref. [2], p. 179.

    Google Scholar 

  45. T. Takagahara and K. Takeda, Phys. Rev. B 46, 15578 (1992).

    Article  ADS  Google Scholar 

  46. A.J. Read, R.J. Needs, K.J. Nash, L.T. Canham, P.D.J. Calcott, and A. Qtiesh, Phys. Rev. Lett. 69, 1232 (1992).

    Article  ADS  Google Scholar 

  47. F. Buda, J. Kohanoff, and M. Parrinello, Phys. Rev. Lett. 69, 1272 (1992).

    Article  ADS  Google Scholar 

  48. T. Ohono, K. Shiraishi, and T. Ogawa, Phys. Rev. Lett. 69, 2400 (1992).

    Article  ADS  Google Scholar 

  49. M.S. Hybertsen and M. Needals, Phys. Rev. B, to be published.

    Google Scholar 

  50. T. van Buuren, Y. Gao, T. Tiedje, J.R. Dahn, and B.M. Way, Appl. Phys. Lett. 60, 3013 (1992).

    Article  ADS  Google Scholar 

  51. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).

    Article  ADS  Google Scholar 

  52. D. Zhang, R.M. Kolbas, P. Mehta, A.K. Singh, D.J. Lichtenwalner, K.Y. Hsieh, and A.I. Kingon, in Ref. [2], p. 35.

    Google Scholar 

  53. See also S. Furukawa and T. Miyasato, Phys. Rev. B 38, 5726 (1988), who observed quantum size effects on the optical band gap of nanocrystalline Si:H particles.

    Article  ADS  Google Scholar 

  54. Takagi et al. [51] in their work on ultrafine Si particles found an inverse relationship between the PL peak energy and the nanocrystallite size, indicative of quantum size effects.

    Google Scholar 

  55. The research literature on the optical and other properties of p-Si is already quite extensive (see, for example, recent issues of Applied Physics Letters) and only some of the references involving key contributions to the subject can be cited here.

    Google Scholar 

  56. P.C. Searson, Appl. Phys. Lett. 59, 832 (1991).

    Article  ADS  Google Scholar 

  57. J.P. McCaffrey, Ultramicroscopy 38, 149 (1991).

    Article  Google Scholar 

  58. T. George, M.S. Anderson, W.T. Pike, T.L. Lin, R.W. Fathauer, K. H. Jung, and D.L. Kwong, Appl. Phys. Lett. 60, 2359 (1992).

    Article  ADS  Google Scholar 

  59. M.W. Cole, J.F. Harvey, R.A. Lux, D.W. Eckart, and R. Tsu, Appl. Phys. Lett. 60, 2800 (1992).

    Article  ADS  Google Scholar 

  60. S.R. Goodes, T.E. Jenkins, M.I.J. Beale, J.D. Benjamin, and C. Pickering, Semicond. Sci. Technol. 3, 483 (1988).

    Article  ADS  Google Scholar 

  61. R. Tsu, H. Shen, and M. Dutta, Appl. Phys. Lett. 60, 112 (1992).

    Article  ADS  Google Scholar 

  62. J.C. Tsang, M.A. Tischler, and R.T. Collins, Appl. Phys. Lett. 60, 2279 (1992).

    Article  ADS  Google Scholar 

  63. Z. Sui, P.P. Leong, I.P. Herman, G.S. Higashi, and H. Temkin, in Ref. [2], p. 13.

    Google Scholar 

  64. Y.-J. Wu, X.-S. Zhao, and P.D. Persans, in Ref. [2], p. 69.

    Google Scholar 

  65. G. Kanellis, J.F. Morhange, and M. Balkanski, Phys. Rev. B 21, 1543 (1980).

    Article  ADS  Google Scholar 

  66. H. Richter, Z.P. Wang, and L. Ley, Solid State Commun. 39, 625 (1981).

    Article  ADS  Google Scholar 

  67. R. Tsu, S.S. Chao, M. Ize, S.R. Ovshinsky, G.J. Jan, and F.H. Pollak, J. Phys. (Paris) 42, C4–269 (1981).

    Article  Google Scholar 

  68. Z. Iqbal and S. Veprek, J. Phys. C 15, 377 (1982).

    Article  ADS  Google Scholar 

  69. I.H. Campbell and P.M. Fauchet, Solid State Commun. 58, 739 (1986).

    Article  ADS  Google Scholar 

  70. J.C. Vial, A. Bsiesy, F. Gaspard, R. Hérino, M. Ligeon, F. Muller, R. Romestein, and R.M. Macfarlane, Phys. Rev. B 45, 14171 (1992).

    Article  ADS  Google Scholar 

  71. V. Vezin, P. Goudeau, N. Naudon, A. Halimaoui, and G. Bomchil, Appl. Phys. Lett. 60, 2625 (1992).

    Article  ADS  Google Scholar 

  72. J.E. Smith, Jr., M.H. Brodsky, B.L. Crowder, M.I. Nathan, and A. Pinczuk, Phys. Rev. Lett. 26, 642 (1971).

    Article  ADS  Google Scholar 

  73. S. Miyazaki, T. Yasaka, K. Okamoto, K. Shiba, K. Sokamoto, and M. Hirose, in Ref. [2], p. 185.

    Google Scholar 

  74. J.C. Barbour, D. Dimos, T.R. Guilinger, M.J. Kelly, and S.S. Tsao, Appl. Phys. Lett. 59, 2088 (1991).

    Article  ADS  Google Scholar 

  75. V.V. Doan and M.J. Sailor, Appl. Phys. Lett. 60, 619 (1992).

    Article  ADS  Google Scholar 

  76. J.C. Campbell, C. Tsai, K.-H. Li, J. Sarathy, P.R. Sharps, M.L. Timmons, R. Venkatasubramanian, and J.A. Hutchby, Appl. Phys. Lett. 60, 889 (1992).

    Article  ADS  Google Scholar 

  77. X.L. Zheng, W. Wang, and H.C. Chen, Appl. Phys. Lett. 60, 986 (1992).

    Article  ADS  Google Scholar 

  78. Z.Y. Xu, M. Gal, and M. Gross, Appl. Phys. Lett. 60, 1375 (1992).

    Article  ADS  Google Scholar 

  79. J. Sarathy, S. Shih, K.H. Jung, C. Tsai, K.-H. Li, D.L. Kwong, J.C. Campbell, S.-L. Yau, and AJ. Bard, Appl. Phys. Lett. 60, 1532 (1992).

    Article  ADS  Google Scholar 

  80. S. Shih, K.H. Jung, T.Y. Hsieh, J. Sarathy, J.C. Campbell, and D.L. Kwong, Appl. Phys. Lett. 60, 1863 (1992).

    Article  ADS  Google Scholar 

  81. L.E. Friedersdorf, P.C. Searson, S.M. Prokes, O.J. Glembocki, and J.M. Macaulay, Appl. Phys. Lett. 60, 2285 (1992).

    Article  ADS  Google Scholar 

  82. C.H. Perry, F. Lu, F. Namavar, N.M. Kalkhoran, and R.A. Soref, Appl. Phys. Lett. 60, 3117 (1992).

    Article  ADS  Google Scholar 

  83. S.M. Prokes, J.A. Freitas, Jr., and P.C. Searson, Appl. Phys. Lett. 60, 3295 (1992).

    Article  ADS  Google Scholar 

  84. X. Chen, B. Henderson, and K.P. O’Donnell, Appl. Phys. Lett. 60, 2672 (1992).

    Article  ADS  Google Scholar 

  85. M. Matsuura and T. Kamizato, Surf. Sci. 174, 183 (1986).

    Article  ADS  Google Scholar 

  86. R.P. Vasquez, R.W. Fathauer, T. George, A. Ksendzov, and T. Lin, Appl. Phys. Lett. 60, 1004 (1992).

    Article  ADS  Google Scholar 

  87. M. Stutzmann, in these proceedings.

    Google Scholar 

  88. M.A. Tischler and R.T. Collins, Solid State Commun. 84, 819 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lockwood, D. (1993). Optical Properties of Porous Silicon. In: Lockwood, D.J., Pinczuk, A. (eds) Optical Phenomena in Semiconductor Structures of Reduced Dimensions. NATO ASI Series, vol 248. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1912-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1912-2_36

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4845-3

  • Online ISBN: 978-94-011-1912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics