Skip to main content

Spectroscopy of Quantum-Dot Atoms

  • Chapter
  • 152 Accesses

Part of the book series: NATO ASI Series ((NSSE,volume 248))

Abstract

Progress in submicron technology makes it possible to realize man-made low-dimensional electronic systems with quantum confined energy states, i.e., quantum wires and quantum dots. In this review we will address experiments where we approach the quantum limit, i.e., quantum dots with small numbers of electrons per dot. We have prepared arrays of field-effect confined quantum dots with diameters smaller than 100 nm starting from AlxGa1-xAs-GaAs heterostructures. In far-infrared spectroscopy, we observe discrete steps in the gate voltage dependence of the integrated absorption strength indicating directly the incremental occupation of each dot with N = 1, 2, 3, and 4 electrons. From the experiments we can deduce that this discrete number is stabilized by the high Coulomb charging energy of about 15 meV in the very small dots. With this well defined small number of electrons per dot, it becomes possible to perform a kind of ‘atomic’ spectroscopy on these systems. We will show that the dynamic excitations exhibit an interesting complex interplay of atomic-like single-particle and collective many-body effects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.A. Reed, J.N. Randall, R.J. Aggarwal, R.J. Matyi, T.M. Moore, and A.E. Wetsel, Phys. Rev. Lett. 60, 535 (1988)

    Article  ADS  Google Scholar 

  2. T.P. Smith, III, K.Y. Lee, CM. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. B 38, 2172 (1988).

    Article  ADS  Google Scholar 

  3. W. Hansen, T.P. Smith, III, K.Y. Lee, J.A. Brum, C.M. Knoedler, J.M. Hong, and D.P. Kern, Phys. Rev. Lett. 62, 2168 (1989).

    Article  ADS  Google Scholar 

  4. Ch. Sikorski and U. Merkt, Phys. Rev. Lett. 62, 2164 (1989).

    Article  ADS  Google Scholar 

  5. C.T. Liu, K. Nakamura, D.C Tsui, K. Ismail, D.A. Antoniadis, and H.I. Smith, Appl. Phys. Lett. 55, 168 (1989).

    Article  ADS  Google Scholar 

  6. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 64, 788 (1990).

    Article  ADS  Google Scholar 

  7. A. Lorke, J.P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 64, 2559 (1990).

    Article  ADS  Google Scholar 

  8. J. Alsmeier, E. Batke, and J.P. Kotthaus, Phys. Rev. B 41, 1699 (1990).

    Article  ADS  Google Scholar 

  9. B. Meurer, D. Heitmann, and K. Ploog, Phys. Rev. Lett. 68, 1371 (1992).

    Article  ADS  Google Scholar 

  10. D. Heitmann, K. Kern, T. Demel, P. Grambow, K. Ploog, and Y.H. Zhang, Surface Sci. 267, 245 (1992).

    Article  ADS  Google Scholar 

  11. B. Meurer, PhD-Thesis, Stuttgart, Germany (1992).

    Google Scholar 

  12. I. Giaver and H.R. Zeller, Phys. Rev. Lett. 20, 1504 (1968).

    Article  ADS  Google Scholar 

  13. For recent work see, for example, R. Wilkens, E. Ben-Jacob, and R.C. Jaklevic, Phys. Rev. Lett. 63, 801 (1989) and references therein.

    Article  ADS  Google Scholar 

  14. H. van Houten and C W. J. Beenaker, Phys. Rev. Lett. 63, 1893 (1989).

    Article  ADS  Google Scholar 

  15. R.H. Silsbee and R.C Ashoori, Phys. Rev. Lett. 64, 1991 (1990).

    Article  ADS  Google Scholar 

  16. R.C. Ashoori, R.H. Silsbee, L.N. Pfeiffer, and K. West, in Nanostructures and Mesoscopic Systems, edited by W. Kirk and M. Reed (Academic, New York, 1991), p. 323; R.C. Ashoori, H.L. Stormer, J.S. Weiner, L.N. Pfeiffer, S.J. Pearton, K.W. Baldwin, and K.W. West, Phys. Rev. Lett. 68, 3088 (1992).

    Google Scholar 

  17. U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 65, 771 (1990).

    Article  ADS  Google Scholar 

  18. S.J. Allen, Jr., H.L. Stormer, and J.C. Hwang, Phys. Rev. B 28, 4875 (1983).

    Article  ADS  Google Scholar 

  19. D.C. Glattli, E.Y. Andrei, G. Deville, J. Poitrenaud, and F.I.B. Williams, Phys. Rev. Lett. 54, 1710 (1985).

    Article  ADS  Google Scholar 

  20. D.B. Mast, A.J. Dahm, and A.L. Fetter, Phys. Rev. Lett. 54, 1706 (1985).

    Article  ADS  Google Scholar 

  21. V. Shikin, T. Demel, and D. Heitmann, Surf. Sci. 229, 276 (1990).

    Article  ADS  Google Scholar 

  22. A.L. Fetter, Phys. Rev. B 32, 7676 (1985); Phys. Rev. B 33, 5221 (1986).

    Article  ADS  Google Scholar 

  23. V.B. Sandomirskii, V.A. Volkov, G.R. Aizin, and S.A. Mikhailov, Electrochimica Acta 34, 3 (1989).

    Article  Google Scholar 

  24. V. Shikin, S. Nazin, D. Heitmann, and T. Demel, Phys. Rev. B 43, 11903 (1991).

    Article  ADS  Google Scholar 

  25. A. Kumar, S.E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990).

    Article  ADS  Google Scholar 

  26. V. Fock, Z. Phys. 47, 446 (1928).

    Article  ADS  MATH  Google Scholar 

  27. V. Gudmundsson and R.R. Gerhardts, Phys. Rev. B 43, 12098 (1991).

    Article  ADS  Google Scholar 

  28. G.W. Bryant, Phys. Rev. B Lett. 59, 1140 (1987).

    Article  ADS  Google Scholar 

  29. U. Merkt, J. Huser, and M. Wagner, Phys. Rev. B 43, 7320 (1991).

    Article  ADS  Google Scholar 

  30. D. Pfannkuche and R.R. Gerhardts, Phys. Rev. B 44, 13132 (1991).

    Article  ADS  Google Scholar 

  31. P. Ruden and G.H. Döhler, Phys. Rev. B 27, 3547 (1983).

    Article  ADS  Google Scholar 

  32. L. Brey, N. Johnson, and B. Halperin, Phys. Rev. B 40, 10647 (1989).

    Article  ADS  Google Scholar 

  33. P. Maksym and T. Chakraborty, Phys. Rev. Lett. 65, 108 (1990).

    Article  ADS  Google Scholar 

  34. W. Kohn, Phys. Rev. B 123, 1242 (1961).

    Article  ADS  MATH  Google Scholar 

  35. B.A. Wilson, S.J. Allen, Jr., and D.C. Tsui, Phys. Rev. B 24, 5887 (1981).

    Article  ADS  Google Scholar 

  36. U. Merkt, Ch. Sikorski, and J. Alsmeier, in Spectroscopy of Semiconductor Microstructures, edited by G. Fasol, A. Fasolino, and P. Lugli (Plenum, New York, 1989), p. 89.

    Google Scholar 

  37. K. Ensslin, D. Heitmann, H. Sigg, and K. Ploog, Phys. Rev. B 36, 8177 (1987).

    Article  ADS  Google Scholar 

  38. K. Kern, D. Heitmann, P. Grambow, Y.H. Zhang, and K. Ploog, Phys. Rev. Lett. 66, 1618 (1991).

    Article  ADS  Google Scholar 

  39. E. Batke, D. Heitmann, J.P. Kotthaus, and K. Ploog, Phys. Rev. Lett. 54, 2367 (1985).

    Article  ADS  Google Scholar 

  40. P. Grambow, PhD-Thesis, Darmstadt, Germany (1992).

    Google Scholar 

  41. T. Demel, D. Heitmann, P. Grambow, and K. Ploog, Phys. Rev. Lett. 66, 2657 (1991).

    Article  ADS  Google Scholar 

  42. P. Grambow, V. Gudmundson, B. Meurer, R.R. Gerhardts, D. Heitmann, D. Pfannkuche, and K. Ploog, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heitmann, D., Meurer, B., Ploog, K. (1993). Spectroscopy of Quantum-Dot Atoms. In: Lockwood, D.J., Pinczuk, A. (eds) Optical Phenomena in Semiconductor Structures of Reduced Dimensions. NATO ASI Series, vol 248. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1912-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1912-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4845-3

  • Online ISBN: 978-94-011-1912-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics