Neutron Scattering at the Glass Transition

Part of the NATO ASI Series book series (ASIC, volume 415)


In the close neighbourhood of the glass transition temperature, neutron scattering shows fast relaxations with a practically temperature-independent time constant of the order of a picosecond. Recent neutron data indicate a close connection between these fast relaxations and the soft vibrations which coexist and interact with the sound waves in the glassy state, giving rise to the maximum in C p /T 3 (C p specific heat, T temperature) and to the boson peak in neutron and Raman scattering.

The slow α-relaxation of the flow process can only be studied by neutrons at higher temperatures, where the relaxation times enter the nanosecond range. Spin-echo measurements have shown a stretched exponential Kohlrausch time dependence and the validity of the time-temperature Vogel-Fulcher-Tamman scaling even at these very short relaxation times. Furthermore, the separation of the Johari-Goldstein relaxation from the α-process could be observed. Several predictions of the mode coupling theory have been verified in four different substances.


Glass Transition Soft Mode Fast Relaxation Mode Coupling Theory Boson Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Jäckle J. (1986), Rep. Prog. Phys. 49, 171ADSCrossRefGoogle Scholar
  2. [2]
    Bengtzelius U., Götze W. and Sjölander A. (1984) ‘Dynamics of supercooled liquids and the glass transition’, J. Phys. C 17, 5915–5934; Leutheusser E. (1984), Phys. Rev. A 29, 2765; Götze W. (1991), in Liquids, Freezing and the Glass Transition, edited by Hansen J. P., Levesque D. and Zinn-Justin J., ( North-Holland, Amsterdam ) p. 287Google Scholar
  3. [3]
    Hansen, J. P. and MacDonald I. R. (1986) The Theory of Simple Liquids, Academic Press, New YorkGoogle Scholar
  4. [4]
    Phillips W. A. (ed.)(1981), Amorphous Solids: Low temperature properties, Springer, BerlinGoogle Scholar
  5. [5]
    Karpov V. G., Klinger M. I. and Ignat’ev F. N. (1983), Zh. Eksp. Teor. Fiz. 84, 760 [Soy. Phys— JETP 57, 439]Google Scholar
  6. [6]
    Il’in M. A., Karpov V. G. and Parshin D. A. (1987), Zh. Eksp. Teor. Fiz. 92, 291 [Sov. Phys.— JETP 65, 165]Google Scholar
  7. [7]
    Beevers M. S., Crossley J., Garrington D. C. and Williams G. (1977) J. Chem. Soc. Faraday Trans. II73, 458Google Scholar
  8. [8]
    Fytas G., Wang C. H., Lilge D. and Dorfmiiller Th. (1981) J. Chem. Phys. 75, 4247ADSCrossRefGoogle Scholar
  9. [9]
    Dries Th., Fujara F., Kiebel M., Rössler E. and Sillescu H. (1988) J. Chem. Phys. 88, 2139ADSCrossRefGoogle Scholar
  10. [10]
    Johari G. P. and Goldstein M. (1970), J. Chem. Phys. 53, 2372 Johari G. P. (1973), J. Chem. Phys. 58, 1766Google Scholar
  11. [11]
    Hyde P. D., Evert T. E., Cicerone M. T. and Ediger M. D. (1991) J. Non-Cryst. Solids 131–133, 42Google Scholar
  12. [12]
    Bartsch E., Debus O., Fujara F., Kiebel M., Sillescu H. and Petry W. (1991) Ber. Bunsenges. Phys. Chem. 95, 1146CrossRefGoogle Scholar
  13. [13]
    Steffen W., Patkowski A., Meier G. and Fischer E. W., (1992) ‘Depolarized light scattering studies of ortho-terphenyl dynamics above Tg’, J. Chem. Phys. 96, 4171–4179.ADSCrossRefGoogle Scholar
  14. [14]
    Rössler E. (1992) ‘Comment on “Decoupling of time scales of motion in polybutadiene close to the glass transition”; Phys. Rev. Lett. 69, 1620–1620.ADSCrossRefGoogle Scholar
  15. [15]
    Heijboer J. (1978), in Molecular Basis of Transitions and Relaxationsed. by Meier D. J., Gordon and Breach,. New York, p. 75Google Scholar
  16. [16]
    Wang C. H. and Wright R. B. (1970), J. Chem. Phys. 55, 3300ADSCrossRefGoogle Scholar
  17. [17]
    Condat C. A. and Jäckle J. (1992), Phys. Rev. B 46, 8154ADSCrossRefGoogle Scholar
  18. [18]
    Fujara, F. and Petry W. (1987) Europhys. Lett. 4, 921–927ADSCrossRefGoogle Scholar
  19. [19]
    Frick B., Richter, D., Petry W. and Buchenau U. (1987) Z. Phys. B 70, 73ADSCrossRefGoogle Scholar
  20. [20]
    Kanaya T., Kaji K. and Inoue K. (1991) ‘Local motions of cis-1,4-polybutadiene in the melt. A quasielastic neutron-scattering study’, Macromolecules 24, 1826–1832ADSCrossRefGoogle Scholar
  21. [21]
    Wuttke J., Kiebel M., Bartsch E., Fujara F., Petry W. and Sillescu H. (1993) ‘Relaxations and phonons in viscous and glassy orthoterphenyl by neutron scattering’, Z. Phys. B (submitted)Google Scholar
  22. [22]
    Knaak W., Mezei F. and Farago B. (1988) ‘Observation of scaling behaviour of dynamic correlations near liquid-glass transition’, Europhys. Lett. 7, 529–536 (see also the discussion of these data by W. Götze in this volume)ADSCrossRefGoogle Scholar
  23. [23]
    Linder K. (1993) Diplomarbeit RWTH AachenGoogle Scholar
  24. [24]
    Frick B. and Richter D. (1993) unpublishedGoogle Scholar
  25. [25]
    Krüger M., Soltwisch M., Petscherizin I. and Quitmann D. (1992), J. Chem. Phys. 96, 7352ADSCrossRefGoogle Scholar
  26. [26]
    Shuker R. and Gammon R. W. (1970) ‘Raman-scattering selection-rule breaking and the density of states in amorphous materials’, Phys. Rev. Lett. 25, 222–225.ADSCrossRefGoogle Scholar
  27. [27]
    Malinovsky V. K., Novikov V. N., Parshin P. P., Sokolov A. P. and Zemlyanov M. G. (1990), Europhys. Lett. 11, 43ADSCrossRefGoogle Scholar
  28. [28]
    Malinovsky V. K., Novikov V. N., Sokolov A. P. and Bagryansky V. A. (1988) ‘Light scattering by fractons in polymers’, Chem. Phys. Lett. 143, 111–114.ADSCrossRefGoogle Scholar
  29. [29]
    Buchenau U., Nücker N., Dianoux A. J. and Krause D. (1993) Conference on Dynamics of Disordered Materials II, Grenoble, March 1993Google Scholar
  30. [30]
    Buchenau U., Prager M., Nücker N., Dianoux A. J., Ahmad N. and Phillips W. A. (1986), Phys. Rev. B 34, 5665; Buchenau U., Zhou H. M., Nücker N., Gilroy K. S., and Phillips W. A. (1988), Phys. Rev. Lett. 60, 1318Google Scholar
  31. [31]
    Buchenau U. (1990), in Basic Features of the Glassy State, ed. by Colmenero J. and Alegria A., World Scientific, Singapore, p. 297Google Scholar
  32. [32]
    Zeller R. C. and Pohl R. O. (1971), Phys. Rev. B 4, 2029ADSCrossRefGoogle Scholar
  33. [33]
    Freeman J. J. and Anderson A. C. (1986), Phys. Rev. B 34, 5684ADSCrossRefGoogle Scholar
  34. [34]
    Hunklinger S. and Arnold W. (1976), in Physical AcousticsVol. XII, ed. by Mason W.P. and Thurston R.N., Academic Press, New York, p. 155.Google Scholar
  35. Hunklinger S. and von Schickfus M. (1981), in Ref. 2, p. 81Google Scholar
  36. [36]
    Phillips W. A. (1972), J. Low. Temp. Phys. 7, 351; Anderson P. W., Halperin B. I., Varma C. M. (1972), Phil. Mag., 25, 1Google Scholar
  37. [37]
    Laird B. B. and Schober H. R. (1991), Phys. Rev. Lett. 66, 636; Schober H. R. and Laird B. B. (1991), Phys. Rev. B 44, 6746Google Scholar
  38. [38]
    Gil L., Ramos M. A., Bringer A. and Buchenau U. (1993) Phys. Rev. Lett. 70, 182–185ADSCrossRefGoogle Scholar
  39. [39]
    Lasjaunias J. C., Ravex A., Vandorpe M. and Hunklinger S. (1975), Solid State Commun. 17, 1045ADSCrossRefGoogle Scholar
  40. [40]
    Löhneysen H. V., Rüsing H. and Sander W. (1985), Z. Physik B 60, 323ADSCrossRefGoogle Scholar
  41. [41]
    Buchenau U., Galperin Yu. M., Gurevich V. L., Parshin D. A., Ramos M. A. and Schober H. R. (1992), Phys. Rev. B 46, 2798ADSCrossRefGoogle Scholar
  42. [42]
    Cahill D. G. and Pohl R. O. (1987), Phys. Rev. B 35, 4067; D. G. Cahill (1989), Ph. D. Thesis, Cornell UniversityGoogle Scholar
  43. [43]
    Gilroy K. S. and Phillips W. A. (1981), Phil. Mag. B 43, 735CrossRefGoogle Scholar
  44. [44]
    Tielbürger D., Merz R., Ehrenfels R. and Hunklinger S. (1992), Phys. Rev. B 45, 2750ADSCrossRefGoogle Scholar
  45. [45]
    Carini G., Cutroni M., Galli G. and Wanderlingh F. (1978), J. Non-Crystalline Solids 30, 61ADSCrossRefGoogle Scholar
  46. [46]
    Schober H. R., Oligschleger C. and Laird B. B. (1993), J. Non-Crystalline Solids (accepted )Google Scholar
  47. [47]
    Buchenau U. (1992), Phil. Mag. B 65, 303CrossRefGoogle Scholar
  48. [48]
    Buchenau U., Galperin Yu. M., Gurevich V. L. and Schober H. R. (1991), Phys. Rev. B 43, 5039ADSCrossRefGoogle Scholar
  49. [49]
    Phillips W. A., Buchenau U., Nücker N., Dianoux A. J. and Petry W. (1989), Phys. Rev. Lett. 63, 2381ADSCrossRefGoogle Scholar
  50. [50]
    Vineyard C. M. (1959), Phys. Rev. 110, 999ADSCrossRefGoogle Scholar
  51. [51]
    Bhattacharya K., Kehr K. and Buchenau U. (1993) (unpublished)Google Scholar
  52. [52]
    Mezei F., Knaak W. and Farago B. (1987) ‘Neutron spin-echo study of dynamic correlations near the liquid-glass transition’, Phys. Rev. Lett. 58, 571–574.ADSCrossRefGoogle Scholar
  53. [53]
    Richter D., Frick B. and Farago B. (1988) Phys. Rev. Lett. 61, 2465ADSCrossRefGoogle Scholar
  54. [54]
    Richter D., Zorn R., Farago B., Frick B. and Fetters L. J. (1992) ‘Decoupling of time scales of motion in polybutadiene close to the glass transition’, Phys. Rev. Lett. 68, 71–74.ADSCrossRefGoogle Scholar
  55. [55]
    Colmenero J., Alegria, A., Arbe A. and Frick B. (1992) Phys. Rev. Lett. 69, 478–481ADSCrossRefGoogle Scholar
  56. [56]
    Doster W., Cusack S. and Petry W. (1990) Phys. Rev. Lett. 65, 1080–1083ADSCrossRefGoogle Scholar
  57. [57]
    Kiebel M., Bartsch E., Debus O., Fujara F., Petry W. and Sillescu H. (1992) ‘Secondary relaxation in the glass transition regime of ortho-terphenyl observed by incoherent neutron scattering’, Phys. Rev. B 45, 10301–10305ADSCrossRefGoogle Scholar
  58. [58]
    Zorn R. (1993) Dynamics of Disordered Materials II, Conference Grenoble March 1993Google Scholar
  59. [59]
    Frick B., Farago B. and Richter D. (1990) ‘Temperature dependence of the nonergodicity parameter in polybutadiene in the neighbourhood of the glass transition’, Phys. Rev. Lett. 64, 2921–2924.ADSCrossRefGoogle Scholar
  60. [60]
    Hahn H. and Matzke M. (1984), PTB–Bericht FMRB–105, ISSN 03416666, Physikalisch–Technische Bundesanstalt, Braunschweig; (1987) Zeitschrift für Physikalische Chemie 156, 365; Matzke M. and Hahn H. (1988), PTB–Bericht PTBFMRB–116, ISSN 0341–6666 and ISBN 3–88314–763–X, Physikalisch–Technische Bundesanstalt, BraunschweigGoogle Scholar
  61. [61]
    Seeley G. and Keyes T. (1989), J. Chem. Phys. 91, 5581ADSCrossRefGoogle Scholar
  62. [62]
    Xu B. C. and Stratt R. M. (1990), J. Chem. Phys. 92, 1923ADSCrossRefGoogle Scholar
  63. [63]
    Buchner M., Ladanyi B. and Stratt R. M. (1992), J. Chem. Phys. 97, 8522ADSCrossRefGoogle Scholar
  64. [64]
    Cohen M. H. and Turnbull D. (1959), J. Chem Phys. 31, 1164ADSCrossRefGoogle Scholar
  65. [65]
    Buchenau 11. and Zorn R. (1992) ‘A relation between fast and slow motions in glassy and liquid selenium’, Europhys. Lett. 18, 523–528.ADSCrossRefGoogle Scholar
  66. [66]
    Angell C. A. (1984), in Proceedings of the Workshop on Relaxation Effects in Disordered Systems, ed. by Ngai K. and Lee T. K., McGregor and Werner Inc, New York, p. 3.Google Scholar
  67. [67]
    Tao N. J., Li G., Chen X., Du W. M. and Cummins H. Z. (1991), Phys. Rev. B 44, 6665; Tao N. J., Li G. and Cummins H. Z. (1991), Phys. Rev. Lett. 66, 1334Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1993

Authors and Affiliations

  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichFederal Republic of Germany

Personalised recommendations